Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly disinfection in ant colonies

09.01.2018

Invasive garden ants sacrifice infected nest mates to protect their colony – Study published in eLife.

Ants kill colony mates infected with deadly diseases when they are unable to prevent them from falling sick in the first place. In doing so, the ants protect their colony from the outbreak of an epidemic. When fighting diseases, ant colonies show a remarkable similarity with the immune system that protects the organism of vertebrate animals.


Ants with pupa

Christopher Pull

This is the result of a study carried out by researchers at the Institute of Science and Technology Austria (IST Austria), first author and PhD student Christopher Pull and Professor Sylvia Cremer as the senior author, along with collaborators at Royal Holloway, University of London and the University of Würzburg. The study is published today in the journal eLife.

When an ant comes into contact with the pathogenic fungus Metarhizium, it has the potential to harm the entire ant colony. This is because infectious diseases can spread easily among colony members, who live closely together, and may lead to the death of the entire colony if infections are not contained.

Sylvia Cremer and her group have previously shown that invasive garden ants (Lasius neglectus) care for colony members carrying pathogenic fungus spores by intensively grooming the contaminated individual’s body, which reduces the risk of the fungus entering the body and infecting the ant.

But how do ants act when the grooming ants are not successful and an ant becomes infected with the disease? Sylvia Cremer and Christopher Pull, along with their collaborators at Royal Holloway, University of London and the University of Würzburg, investigated this question in their current study published in eLife.

Whilst ants care for pathogen exposed brood, the response to an infection is much more radical: in a series of experiments, the researchers found that the ants kill fungus-infected pupae to stop the pathogen completing its lifecycle, so that it cannot spread any further. The ants act selectively: they detect animals that are already fatally infected using chemical “sickness cues” and kill them.

“We found that the ants are able to smell and single out sick colony members very early on in the infection process. They then perform what we have termed “destructive disinfection”, the killing of the sick animal and the fungus, to prevent the pathogen becoming contagious and spreading to nestmates”, explains Sylvia Cremer.

This destructive disinfection has remarkable parallels with the immune system of vertebrates. Infected cells in a body send out a signal that attracts immune cells. These then make holes in the infected cell to inject toxic substances that kill both the cell and the pathogen.

Something very similar happens in Lasius neglectus, as Christopher Pull describes: “The ants produce formic acid that can kill the fungus, but it needs to enter the pupa’s body for it to work. During destructive disinfection, the ants therefore remove pupa’s silk cocoon and bite holes in its body. They then spray their formic acid through these holes, so that it enters the pupa’s body and kills the pupa along with the fungus”.

Sylvia Cremer explains where this similarity may come from: “Ants in a colony work together like the cells in a body, and colonies are sometimes even referred to as ‘superorganisms’. In our study, we show the remarkable parallels between the immune responses of ant colonies and that of vertebrate bodies. The ability to detect and destroy harmful elements was likely necessary for the evolution of both multicellular organisms from single celled life and superorganisms from individual animals.”

Christopher Pull, first author of the study, was a PhD student in the group of Sylvia Cremer at IST Austria from 2012 to 2017. He is now a postdoctoral researcher at Royal Holloway, University of London. Sylvia Cremer investigates social immune defences in ants to learn more about epidemiology and disease dynamics in societies.

Media Contact

Elisabeth Guggenberger, Media Relations Manager at IST Austria
Tel: +43 (0)2243 9000 1199
Email: elisabeth.guggenberger@ist.ac.at

Sarah Honeycombe, PR Officer at Royal Holloway, University of London
Tel: 01784 443 967
Email: Sarah.Honeycombe@rhul.ac.uk

Original article:
Christopher D. Pull et al: “Destructive disinfection of infected brood prevents systemic disease spread in ant colonies”, elife, 2017, DOI: 10.7554/eLife.32073

About IST Austria – www.ist.ac.at

The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas.

About Royal Holloway, University of London – www.royalholloway.ac.uk

Royal Holloway, University of London, is ranked in the top 30 universities in the UK and the top 200 universities in the world . Through world class research that expands minds and changes lives, the dedication of our teachers and the feel of the Royal Holloway experience, ours is a community that inspires individuals to succeed academically, socially and personally.
The university was founded by two social reformers who pioneered the ideal of education and knowledge for all who could benefit. Their vision lives on today. As one of the UK’s leading research-intensive universities we are home to some of the world’s foremost authorities in the sciences, arts, business, economics and law. We are strengthened by diversity, and welcome students and academics who travel from all over the world to study and work here, ensuring an international and multi-cultural perspective within a close knit and historic campus.

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: Lasius neglectus ant colonies ants destructive disinfection immune immune system

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>