Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

De-TOXing exhausted T cells may bolster CAR T immunotherapy against solid tumors

28.05.2019

Deletion of key gene regulatory factors fortifies T cell attack on melanoma cells

A decade ago researchers announced development of a cancer immunotherapy called CAR (for chimeric antigen receptor)-T, in which a patient is re-infused with their own genetically modified T cells equipped to mount a potent anti-tumor attack.


Chimeric antigen receptor therapy. CAR molecules (light blue) bind to CD19 molecules on a cancer cell leading to segregation of granzyme vesicles (yellow) that activate apoptosis.

Credit: La Jolla Institute for Immunology

Usage Restrictions: Only in conjunction with articles describing this research.

Since then CAR T approaches (one of several strategies collectively known as "adoptive T cell transfer") have made headlines as a novel cellular immunotherapy tool, most successfully against so-called "liquid cancers" like leukemias and lymphomas.

Sarcomas and carcinomas have proven more resistant to these approaches, in part because engineered T-cells progressively lose tumor-fighting capacity once they infiltrate a tumor. Immunologists call this cellular fatigue T cell "exhaustion" or "dysfunction."

In efforts to understand why, La Jolla Institute for Immunology (LJI) investigators Anjana Rao, Ph.D., and Patrick Hogan, Ph.D., have published a series of papers over the last years reporting that a transcription factor that regulates gene expression, called NFAT, switches on "downstream" genes that weaken T cell responses to tumors and thus perpetrates T cell exhaustion.

One set of these downstream genes encodes transcription factors known as NR4A, and a previous graduate student, Joyce Chen, showed that genetic elimination of NR4A proteins in tumor-infiltrating CAR T cells improved tumor rejection. However, the identity of additional players cooperating with NFAT and NR4A in that pathway has remained unknown.

Now a paper published in this week's online edition of the Proceedings of the National Academy of Sciences (PNAS) from the Rao and Hogan labs provides a more complete list of participants in an extensive gene expression network that establishes and maintains T cell exhaustion.

The study employs a mouse model to show that genetically eliminating two new factors, TOX and TOX2, also improves eradication of "solid" melanoma tumors in the CAR T model. This work suggests that comparable interventions to target NR4A and TOX factors in patients may extend the use of CAR T-based immunotherapy to solid tumors.

The group began by comparing gene expression profiles in samples of normal versus "exhausted" T cells, searching for factors upregulated in parallel with NR4A as co-conspirators in T cell dysfunction. "We found that two DNA binding proteins called TOX and TOX2 were consistently highly expressed along with NR4A transcription factors," says Hyungseok Seo, Ph.D., a postdoctoral fellow in the Rao lab and the study's first author. "This discovery suggested that factors like NFAT or NR4A may control expression of TOX."

The group then recapitulated a CAR T protocol in mice by first inoculating animals with melanoma tumor cells to establish a tumor, and then a week later infusing mice with one of two collections of T cells: a "control" sample from a normal mouse, versus a sample derived from mouse genetically engineered to lack TOX and TOX2 expression in T cells.

Remarkably, mice infused with TOX-deficient CAR T cells showed more robust regression of melanoma tumors than did mice infused with normal cells. Moreover, mice treated with TOX-deficient CAR T cells exhibited dramatically increased survival, suggesting that loss of TOX factors combats T cell exhaustion and allows T cells to destroy tumor cells more effectively.

Additional analysis led the investigators down a pathway ending with a well-known immune adversary. The researchers showed that TOX factors join forces with both NFAT and NR4A to promote expression of an inhibitory receptor called PD-1, which decorates the surface of exhausted T cells and sends immunosuppressive signals.

PD-1 is blocked by numerous monoclonal antibodies called checkpoint inhibitors, which combat immunosuppression and activate an innate anti-cancer immune response. Convergence of TOX, NFAT, and NR4A on PD-1 makes molecular and immunological sense and puts it at the convergence of both cellular and antibody immunotherapy approaches.

"Currently, CAR T cell therapy shows amazing effects in patients with "liquid tumors" such as leukemia and lymphoma," says Seo. "But they still do not work well in patients with solid tumors due to T cell exhaustion. If we could inhibit TOX or NR4A by treating CAR T cells with a small molecule, this strategy might show a strong therapeutic effect against solid cancers such as melanomas."

###

The study was funded by NIH grants AI109842, AI040127, AI108651 and AI140095, GM007752, S10OD016262 and S10 RR027366. Other support came from an AACR-Genentech Immuno-oncology Research, a Donald J. Gogel Cancer Research Irvington Fellowship, a PhRMA Foundation Paul Calabresi Medical Student Research Fellowship and graduate student fellowships from CONACYT/UCMEXUS.

Full citation: Hyungseok Seo, Joyce Chena, Edahí Gonzàlez Avalosa, Daniela Samaniego Castruitaa, Arundhoti Dasg, Yueqiang H. Wang, Isaac F. López Moyadoa, Romain Georgesa, Wade Zhanga, Atsushi Onoderaa, Cheng-Jang Wuk, Li-Fan Luk, Patrick G. Hogan, Avinash Bhandoola and Anjana Rao. TOX and TOX2 cooperate with NR4A transcription factors to impose CD8+T cell exhaustion. PNAS, 2019. doi.: 10.1073/pnas.201905675

About La Jolla Institute

The La Jolla Institute for Immunology is dedicated to understanding the intricacies and power of the immune system so that we may apply that knowledge to promote human health and prevent a wide range of diseases. Since its founding in 1988 as an independent, nonprofit research organization, the Institute has made numerous advances leading toward its goal: life without disease.

Media Contact

Gina Kirchweger
gina@lji.org
858-357-7481

 @ljiresearch

www.lji.org 

Gina Kirchweger | EurekAlert!
Further information:
http://dx.doi.org/10.1073/pnas.201905675

More articles from Life Sciences:

nachricht Empowering the cell’s disposal system to deal with disease-prone garbage
17.02.2020 | Goethe-Universität Frankfurt am Main

nachricht Computer simulations visualize how DNA is recognized to convert cells into stem cells
17.02.2020 | Max-Planck-Institut für molekulare Biomedizin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

How do rotor blades deform in wind gusts?

17.02.2020 | Physics and Astronomy

Understanding Metal Ion Release from Hip Implants

17.02.2020 | Materials Sciences

Computer simulations visualize how DNA is recognized to convert cells into stem cells

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>