Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data on the breakdown of the KRas protein

22.04.2009
KRas is one of the usual suspects in cancer. It is a protein that is mutated in 30% of human tumors and has been implicated in the regulation of many cell signalling pathways.

For this reason, it is one of the main focuses of attention of international basic research and it is difficult to publish new information relating to its molecular biology.

Researchers from the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and the University of Barcelona (UB) have discovered a new breakdown pathway for this protein. The results, which could mean a new form of signalling involving KRas, were published in the latest edition of the Journal of Cell Biology (184(6):863-79), where they merited an appearance on the front page of the journal and an editorial comment.

This study is part of the doctoral thesis of Dr. Albert Lu and includes the participation of Dr. Oriol Bachs, Dr. Carles Enrich, Dr. Neus Agell and Dr. Francesc Tebar, researchers from IDIBAPS and the Department of Cell Biology, Immunology and Neuroscience of the Faculty of Medicine of the University of Barcelona. Researchers from the University of Kyoto also took part in the study.

The article describes how the KRas protein is actively transported from the cell membrane, where most of its known activity takes place, to the lysosomes. The lysosomes are organelles responsible for breaking down proteins; this breakdown pathway was unknown in the case of KRas. Thanks to videomicroscopy techniques using a confocal microscope and the fluorescence, resonance energy transfer (FRET) technique, the researchers have observed how the protein is brought inside the cell and transported to the lysosomes. The protein remains active during this journey through the interior of the cell, which leads to the suspicion that it continues to exercise its influence on signalling pathways relating to cell proliferation and the appearance of cancers.

The signalling pathways activated by KRas are highly complex. With the newly available data, it will be necessary to investigate whether the signals emitted on the way to the lysosomes have a different meaning for the cell than those generated from the membrane, the protein’s usual site of action.

These results provide clues to stimulating the elimination of KRas, a line of research that might result in new therapeutic strategies against cancer and diseases in which the formation of lysosomes is abnormal, such as Niemann-Pick disease. KRas is already used in the diagnosis of diseases such as colon, lung and breast cancer. The better we understand its biology, the more we will know about how it appears and how this and other diseases can be combatted.

Alex Argemi | EurekAlert!
Further information:
http://www.clinic.ub.es

More articles from Life Sciences:

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>