Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark proteome as the focus of a new Priority Program funded by the German Research Foundation

01.06.2018

Edward Lemke of Mainz University to coordinate the DFG Priority Program researching intrinsically disordered proteins and their function in the cell

Professor Edward Lemke will be coordinating a new Priority Program researching the formation and function of characteristic protein complexes in the cell. The German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) has approved the establishment of the program from 2019, with a budget of EUR 6 million in the first three years.


Dark proteome: The new DFG Priority Program aims to shed light on the molecular mechanisms that occur in the protein droplets.

photo/©: Gemma Estrada Girona

The Molecular Mechanisms of Functional Phase Separation program (SPP 2191) is in one of the most groundbreaking research areas in the life sciences supported by the German Research Foundation. In January 2019, Lemke was appointed Professor of Synthetic Biophysics at Johannes Gutenberg University Mainz (JGU) and, conjointly, an Adjunct Director at the Institute of Molecular Biology (IMB). He is also a fellow of Mainz University's Gutenberg Research College. As a biophysical chemist, Lemke is a pioneer in the field of intrinsically disordered proteins.

"The DFG approval of the program is further proof of the excellence of life science research in Mainz and also represents another milestone in the successful collaboration between Mainz University and the Institute of Molecular Biology. As an Adjunct Professor, Lemke is able to link his research at the university particularly closely with his work at IMB.

The dual affiliation opens up unique synergies in his discipline," explained the Minister of Science of Rhineland-Palatinate, Professor Konrad Wolf. "Just a few days ago the nonprofit Boehringer Ingelheim Foundation and the state of Rhineland-Palatinate announced that they are granting IMB a further EUR 106 million from 2020 to 2027. The announcement of the new DFG program to be based at Mainz University validates this funding decision."

Partially structured proteins for highly dynamic compartments

Proteins are the building blocks of life, present in every cell. They form muscle tissue and play essential roles as enzymes and in the immune response, to name just a few examples. The function of proteins was thought so far to be essentially dependent on their three-dimensional structure which is the result of the way in which the amino acid chains are folded.

However, not all proteins have an ordered three-dimensional structure. A relatively large proportion, in humans estimated at over 30 percent, is formed by disordered or partially-ordered proteins. These intrinsically disordered proteins have, as a group, been termed the dark proteome. How these structures are employed by cells to enable novel dynamic functions was discovered only a few years ago.

"Our cells contain protein droplets, which swim in the cell fluid like oil drops on water," Lemke described the current status of research. The protein droplets form via phase separation, in which the cell's "spaghetti molecules," i.e., the intrinsically disordered proteins and single-strand RNA, spontaneously bind together at high concentrations.

"In the cells, new compartments form that are not separated from the rest of the cell by a membrane. These are small protein-RNA factories, which perform new functions and are highly dynamic," explained Lemke. The nucleolus in the cell nucleus, in which many of the cell's fundamental processes occur, is one such mini factory, while stress granules, which the cell forms in response to stress, are another example. However, when proteins incorrectly aggregate they can also result in a variety of diseases.

Understanding phase separation as a functional instrument of the cell

The new DFG Priority Program aims to shed light on these protein structures. The term "dark proteome" refers to the difficulty in visualizing the intrinsically disordered proteins in their original spaghetti-like state, making them difficult to study. "The focus of the Priority Program is to understand how cells exploit the phase separation. We are keen to find out the new functions that the collective of proteins perform. These are fundamental processes that, up to now, biology and the life sciences have largely overlooked," asserted Lemke.

The scientists involved in SPP 2191 will be employing groundbreaking new experimental methods. Lemke also hopes that many concepts and techniques from polymer chemistry can be transferred into the life sciences. Thus, one potential source of collaboration is the Max Planck Institute for Polymer Research in Mainz.

The German Research Foundation has now invited proposals for the newly approved Priority Program to select individual project partners for the overarching subject area. DFG Priority Programs are usually funded for six years.

Image:
http://www.uni-mainz.de/bilder_presse/10_imp_phasenseparation_spp.jpg
Dark proteome: The new DFG Priority Program aims to shed light on the molecular mechanisms that occur in the protein droplets.
photo/©: Gemma Estrada Girona

Contact:
Professor Dr. Edward Lemke
Synthetic Biophysics
Institute of Molecular Physiology
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
e-mail: edlemke@uni-mainz.de
http://www.lemkelab.com
http://www.imb.de/research/lemke/research/

Related links:
http://www.gfk.uni-mainz.de/eng/2266.php – Professor Edward Lemke at the Gutenberg Research College (GRC)
https://www.embl.de/research/units/scb/lemke/index.html – Lemke Group "High resolution studies of protein plasticity" at the European Molecular Biology Laboratory (EMBL)
http://www.dfg.de/en/research_funding/programmes/coordinated_programmes/priority... – DFG Priority Programs
http://www.dfg.de/en/research_funding/announcements_proposals/2018/info_wissensc... – Call for proposals for the SPP 2191 DFG Priority Program
http://www.spp2191.com/ – website of the SPP 2191 DFG Priority Program

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>