Dark plumage helps birds survive on small islands

This image shows a typical Chestnut-bellied Monarch (left) vs. a melanic individual (right). Credit: A. Uy

One less-studied pattern of evolution on islands is the tendency for animal populations to develop “melanism”–that is, dark or black coloration. J. Albert Uy and Luis Vargas-Castro of the University of Miami found an ideal species to study this phenomenon in the Chestnut-bellied Monarch (Monarcha castaneiventris), a bird found in the Solomon Islands.

Most have the chestnut belly suggested by their name, but in the subspecies found in the Russell Islands, a few all-black birds coexist with the chestnut-bellied majority. After visiting 13 islands of varying sizes to survey their Chestnut-bellied Monarch populations, Uy and Vargas-Castro confirm in a new paper published this week in The Auk: Ornithological Advances that island size predicts the frequency of melanic birds, with populations on smaller islands including more dark individuals.

Because the pattern is repeated on island after island, it is very unlikely to have developed through random chance; instead, dark coloration must provide some sort of benefit to birds on small islands.

Studies in mammals and fish have found a genetic link between melanism and aggressive behavior, and Uy and Vargas-Castro speculate that the limited space available on smaller islands makes competition for breeding territories more intense, giving an advantage to the most aggressive individuals.

Previous experiments with other Monarcha castaneiventris subspecies using taxidermied birds and recorded songs have shown that melanic birds react more aggressively than their chestnut-bellied counterparts when they perceive a threat to their territory.

Uy had been fascinated by Chestnut-bellied Monarchs ever since reading a description of their plumage variations in Ernst Mayr's seminal book on speciation, Systematics and the Origin of Species from a Viewpoint of a Zoologist, when he was a graduate student.

“I was hooked and longed to work on the group,” he says. “I thought this would be the perfect species to explore these questions about the ecology of plumage diversification and the origin of species, as the variable populations of the chestnut-bellied flycatcher may be at different stages of the speciation process. It took me over a decade to finally manage to get to the Solomons, and I've been working on these flycatchers now for nearly 10 years.”

“Patterns of biodiversity on islands have always been important for understanding fundamental principals in ecology and evolution. Using the same archipelago that enchanted Ernst Mayr decades ago, Uy and Vargas-Castro reveal fascinating patterns of melanism and island size,” adds Rebecca Safran of the University of Colorado, an expert on divergence between bird populations who was not involved in the study. “These patterns add to the fundamental importance of islands as natural experiments for studies in biodiversity.”

“Island size predicts the frequency of melanic birds in the color-polymorphic flycatcher Monarcha castaneiventris of the Solomon Islands” is available at http://www.aoucospubs.org/doi/full/10.1642/AUK-14-284.1.

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology that began in 1884 as the official publication of the American Ornithologists' Union. In 2009, The Auk was honored as one of the 100 most influential journals of biology and medicine over the past 100 years.

Media Contact

J. Albert Uy
uy@bio.miami.edu

http://www.aoucospubs.org 

Media Contact

J. Albert Uy EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors