Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dandelion seeds reveal newly discovered form of natural flight

18.10.2018

Study explains why the plant is among the best fliers in the natural world

The extraordinary flying ability of dandelion seeds is possible thanks to a form of flight that has not been seen before in nature, research has revealed.


A ring-shaped air bubble forms as air moves through the bristles, enhancing the drag that slows their descent, according to new research from the University of Edinburgh.

Credit: Naomi Nakayami


When dandelion seeds fly, a ring-shaped air bubble forms as air moves through the bristles, enhancing the drag that slows their descent.

Credit: Cathal Cummins

The discovery, which confirms the common plant among the natural world's best fliers, shows that movement of air around and within its parachute-shaped bundle of bristles enables seeds to travel great distances - often a kilometre or more, kept afloat entirely by wind power.

Researchers from the University of Edinburgh carried out experiments to better understand why dandelion seeds fly so well, despite their parachute structure being largely made up of empty space.

Their study revealed that a ring-shaped air bubble forms as air moves through the bristles, enhancing the drag that slows each seed's descent to the ground.

This newly found form of air bubble - which the scientists have named the separated vortex ring - is physically detached from the bristles and is stabilised by air flowing through it.

The amount of air flowing through, which is critical for keeping the bubble stable and directly above the seed in flight, is precisely controlled by the spacing of the bristles.

This flight mechanism of the bristly parachute underpins the seeds' steady flight. It is four times more efficient than what is possible with conventional parachute design, according to the research.

Researchers suggest that the dandelion's porous parachute might inspire the development of small-scale drones that require little or no power consumption. Such drones could be useful for remote sensing or air pollution monitoring.

The study, published in Nature, was funded by the Leverhulme Trust and the Royal Society.

Dr Cathal Cummins, of the University of Edinburgh's Schools of Biological Sciences and Engineering, who led the study, said: "Taking a closer look at the ingenious structures in nature - like the dandelion's parachute - can reveal novel insights. We found a natural solution for flight that minimises the material and energy costs, which can be applied to engineering of sustainable technology."

Media Contact

Catriona Kelly
Catriona.Kelly@ed.ac.uk
44-779-135-5940

 @edinunimedia

http://www.ed.ac.uk 

Catriona Kelly | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41586-018-0604-2

More articles from Life Sciences:

nachricht New membrane technology to boost water purification and energy storage
04.12.2019 | Imperial College London

nachricht Dramatic transition in Streptomyces life cycle explained in new discovery
04.12.2019 | John Innes Centre

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Dramatic transition in Streptomyces life cycle explained in new discovery

04.12.2019 | Life Sciences

Early immune response may improve cancer immunotherapies

04.12.2019 | Health and Medicine

Neurodegenerative diseases may be caused by transportation failures inside neurons

04.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>