Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Daley and Colleagues Create 20 Disease-specific Stem Cell Lines

11.08.2008
Researchers from the Harvard Stem Cell Institute and Stem Cell Program at Children’s Hospital Boston have produced a robust new collection of disease-specific stem cell lines, all of which were developed using the new induced pluripotent stem cell (iPS) technique.

Harvard Stem Cell Institute researcher George Q. Daley, MD, PhD, also associate director of the Stem Cell Program at Children’s Hospital Boston, and HSCI colleagues Konrad Hochedlinger and Chad Cowan have produced a robust new collection of disease-specific stem cell lines, all of which were developed using the new induced pluripotent stem cell (iPS) technique. The paper is being published in the August 6 on-line edition of the journal Cell.

The new iPS lines, developed from the cells of patients ranging in age from one month to 57-years-old and suffering from a range of conditions from Down Syndrome to Parkinson’s disease, will be deposited in a new HSCI “core” facility being established at Massachusetts General Hospital (MGH), HSCI co-director Doug Melton announced yesterday. The operations of the iPS Core will be overseen by a faculty committee, which Daley will chair.

The cell lines the researchers produced carry the genes or genetic components for 10 different diseases, including Parkinson’s Disease, Type I diabetes, Huntington’s Disease, Down Syndrome, a form of combined immunodeficiency (“Bubble Boy’s Disease”), Lesch-Nyhan syndrome, Gaucher’s Disease, and two forms of Muscular Dystrophy, among others.

“We wanted to produce a large number of disease models for ourselves, our collaborators, and the stem cell research community to accelerate research,” Daley said. “The original embryonic stem cell lines are generic, and allow you to ask only basic questions. But these new lines are valuable tools for attacking the root causes of disease. Our work is just the beginning for studying thousands of diseases in a petri dish,” he said.

Melton said that the HSCI iPS Core will serve as a repository for iPS cells produced by HSCI scientists. “The Core will also function as a technical laboratory to produce these disease- specific lines for use by scientists around the world,” Melton said. He went on to say that “the suite of iPS cell lines reported by the Daley group marks an important achievement and a very significant advance for patients suffering from degenerative diseases.

These disease-specific iPS cells are invaluable tools that will allow researchers to watch the development diseases in petri dishes, outside of the patients. And we have good reason to believe that this will make it possible to find new treatments, and eventually drugs, to slow or even stop the course of a number of diseases. In years ahead,” Melton said, “this report will be seen as opening the door to a new approach to develop therapies."

"One of our goals in creating the NIH Director's Pioneer Award programs was to enable exceptionally creative scientists to move quickly in promising new directions, thereby speeding the intellectual and technical breakthroughs needed to address major challenges in biomedical or behavioral research," said National Institutes of Health Director Elias A. Zerhouni, M.D. "This is certainly the case for Drs. Daley and Hochedlinger, who deployed their Director's award resources to advance our ability to use induced pluripotent stem cells for disease-specific studies and drug development."

Daley and his colleagues, led by first-author and Children’s researcher In Hyun Park, PhD, intentionally produced some stem cell lines for highly heritable, single-gene diseases, such as Gaucher’s; complex genetic syndromes, such as Down; and then complex diseases, such as Parkinson’s, that involve genetic, cellular, and perhaps environmental components.

“The cell lines available from the iPS Core will allow stem cell researchers around the world to explore possible gene therapies for some conditions, and will aid in the development of drugs for others,” Daley said.

While Daley, President of the International Society for Stem Cell Research, is enthusiastic about the promise of reprogramming studies, he is far from ready to abandon experiments with embryonic stem cells. Daley believes that reprogramming and ESC research must advance in tandem to bring cell therapy to the clinic as quickly as possible.

The study was supported by grants from the National Institutes of Health (NIH), an NIH Director's Pioneer Award of the NIH Roadmap for Medical Research, an NIH Innovator’s Award, the Burroughs Wellcome Fund, the Leukemia and Lymhoma Society, the Harvard Stem Cell Institute, Children’s Hospital Boston Stem Cell Program, the Stowers Medical Institute, and the Howard Hughes Medical Institute.

Bess Andrews | Newswise Science News
Further information:
http://www.harvard.edu
http://www.cell.com

Further reports about: Cell Daley Down Syndrome HSCI IPS Merit Award NIH Parkinson disease-specific embryonic stem cells

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>