Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cytotoxins contribute to virulence of deadly epidemic bacterial infections

02.02.2017

Severity of group A Streptococcus infections, including 'flesh-eating disease,' attributed to presence of 2 toxins, according to a new report in The American Journal of Pathology

Beginning in the mid-1980s, an epidemic of severe invasive infections caused by Streptococcus pyogenes (S. pyogenes), also known as group A streptococcus (GAS), occurred in the United States, Europe, and elsewhere. The general public became much more aware of these serious and sometimes fatal infections, commonly known as the "flesh-eating disease." Potent cytotoxins produced by this human pathogen contribute to the infection. A new study in The American Journal of Pathology reports that the bacteria's full virulence is dependent on the presence of two specific cytotoxins, NADase (SPN) and streptolysin O (SLO).


This is a scanning electron micrograph of the interaction of Streptococcus pyogenes (rounded blue objects) with a human neutrophil (large purple objects with ruffles and extensions).

Credit: National Institute of Allergy and Infectious Diseases

Bacteria produce cytotoxins that can cause cell death and result in infections of the deep fascia and other tissues, including necrotizing fasciitis. "Our research revealed that the most severe form of the disease requires two cytotoxins. If either one or both are missing, the infection is much less dangerous," explained lead investigator James M. Musser, MD, PhD, chairman of the Department of Pathology and Genomic Medicine at Houston Methodist Research Institute (Houston, TX).

To evaluate how the toxins SPN and SLO act together, investigators used mice infected with genetically altered S. pyogenes strains that produced either, both, or neither of the toxins. They found that mutant strains lacking either SPN or SLO or both do not cause the most severe forms of necrotizing fasciitis, necrotizing myositis, bacteremia, and other soft tissue infections. Production of both toxins was required for full infection virulence.

Resistance to bacterial infections depends in part on innate immunity conferred by white blood cells, including polymorphonuclear leukocytes (primarily neutrophils). The researchers found evidence that infections with SPN- and SLO-deficient S. pyogenes could be controlled better because they were less likely to resist the bactericidal effects of human polymorphonuclear leukocytes.

According to the Centers for Disease Control and Prevention, approximately 700 to 1,100 cases of necrotizing fasciitis caused by group A streptococcus have occurred yearly since 2010. Although the disease primarily affects the young and old and those with underlying chronic conditions, it may also develop in healthy individuals. Transmission occurs person-to-person, many times through a break in the skin.

"We do not have a Group A strep vaccine that works right now," commented Dr. Musser. "The information we gained from this research may help to develop more effective therapeutics, such as inhibitors of these two toxins, or even a vaccine."

Media Contact

Eileen Leahy
ajpmedia@elsevier.com
732-238-3628

 @elseviernews

https://www.elsevier.com/ 

Eileen Leahy | EurekAlert!

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>