Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cystic fibrosis makes airways more acidic, reduces bacterial killing

05.07.2012
The human airway is a pretty inhospitable place for microbes. There are numerous immune defense mechanisms poised to kill or remove inhaled bacteria before they can cause problems. But cystic fibrosis (CF) disrupts these defenses, leaving patients particularly susceptible to airway infection, which is the major cause of disease and death in CF.

Using a unique animal model of CF, a team of scientists from the University of Iowa has discovered a surprising difference between healthy airways and airways affected by CF that leads to reduced bacterial killing in CF airways. The finding directly links the genetic cause of CF -- mutations in a channel protein called cystic fibrosis transmembrane conductance regulator (CFTR) -- to the disruption of a biological mechanism that protects lungs from bacterial infection.

The study, published in the July 5 issue of Nature, shows that the thin layer of liquid coating the airways is more acidic in newborn pigs with CF than in healthy newborn pigs, and that the increased acidity (lower pH) reduces the ability of the liquid to kill bacteria. Moreover, making the airway liquid less acidic with a simple solution of baking soda restores bacterial killing in CF airways to almost normal levels.

Although the findings suggest that therapies that raise the pH of the airway surface liquid (ASL) may help prevent infection in CF, the researchers strongly caution that this discovery is at an early stage.

"Some have asked us if people with CF should inhale an aerosol that would raise the pH of the ASL," says Joseph Zabner, M.D., UI professor of internal medicine and senior study author. "At this point, we have no idea if that would help. And more importantly, it could be harmful."

"This was a very surprising finding," adds Alejandro Pezzulo, M.D., UI postdoctoral fellow and co-lead author of the study. "There have been many ideas as to what goes wrong in CF, but lack of a good experimental model has made it difficult to gain insight into how the disease gets started."

Unlike mouse models of the disease, the CF pigs develop lung disease that closely mimics what is seen in humans. Previous studies from the UI lab showed that although the airways of CF pigs are infection-free at birth, they are less able to get rid of bacteria than healthy airways and quickly become infected.

Testing bacterial killing in airways

The UI team, including Pezzulo and co-lead author Xiao Xiao Tang, Ph.D., a Howard Hughes Medical Institute postdoctoral research associate at the UI, developed a simple experiment to study bacterial killing by the ASL. They immobilized bacteria on a tiny gold grid and exposed these bacteria to ASL from CF-affected and healthy pigs.

The ASL from normal airways killed most of the bacteria very rapidly, whereas the ASL from CF-affected airways only killed about half of the bacteria, suggesting that in CF airways some bacteria would survive and go on to cause infection.

Further investigation showed that although many characteristics of the ASL in CF and non-CF pigs are similar, the ASL from CF airways is more acidic than the liquid from healthy airways.

When the scientists raised the pH of the ASL in CF pigs through inhalation of a solution of sodium bicarbonate (baking soda), the treated ASL was capable of killing most of the bacteria on the grid (just like ASL from normal airways). Conversely, lowering the pH of ASL from normal airways reduced bacterial killing. The finding confirms that pH is a critical factor for bacterial killing,

"This study explains why a defect in the CFTR channel protein leads to reduced bacterial killing and an airway host defense defect," Tang says. "Impaired bicarbonate transport because of the defective CFTR could cause increased acidity in the ASL, which the study shows reduces the ASL bacterial killing capability."

Potential clinical applications

Although the approach is not ready for clinical application, the study indicates that pH is a contributing factor in airway infection, suggesting that therapies that modify airway pH may potentially be helpful in preventing infection in CF patients.

In addition, the researchers believe that using the bacteria-coated grids to measure bacterial killing in airways might provide a simple way to test the effectiveness of other new CF therapies that currently are being developed.

The UI team also included Mark Hoegger; Mahmoud Abou Alaiwa; Shyam Ramachandran; Thomas Moninger; Phillip Karp, Christine Wohlford-Lenane; Henk Haagsman; Martin van Eijk; Botond Banfi; Alexander Horsewill; David Stoltz; Paul McCray; and Michael Welsh.

The work was supported in part by grants from the National Heart, Lung, and Blood Institute (HL51670, HL091842, HL102288), and the Cystic Fibrosis Foundation. Welsh is a Howard Hughes Medical Institute (HHMI) investigator.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>