Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Culling can't control deadly bat disease

15.02.2011
Culling will not stop the spread of a deadly fungus that is threatening to wipe out hibernating bats in North America, according to a new mathematical model.

White-nose syndrome, which is estimated to have killed over a million bats in a three year period, is probably caused by a newly discovered cold-adapted fungus, Geomyces destructans.

The new model examines how WNS is passed from bat to bat and concludes that culling would not work because of the complexity of bat life history and because the fungal pathogen occurs in the caves and mines where the bats live.

"Because the disease is highly virulent, our model results support the hypothesis that transmission occurs in all contact areas," write the paper's authors, Tom Hallam and Gary McCracken, both of the University of Tennessee. "Our simulations indicated culling will not control WNS in bats primarily because contact rates are high among colonial bats, contact occurs in multiple arenas, and periodic movement between arenas occurs."

Ground work on the model was initiated in a 2009 modeling workshop on white-nose syndrome held at the National Institute for Mathematical and Biological Synthesis (NIMBioS) in Knoxville, Tennessee. At the interdisciplinary workshop, experts in the fields of bat physiology, fungal ecology, ecotoxicology, and epidemiology discussed ways in which mathematical modeling could be applied to predict and control the spread of WNS.

"NIMBioS' support for the workshop that initiated this project was crucial in helping formulate models that could be useful in looking at white-nose syndrome," Hallam said.

Culling of bats in areas where the disease is present is one of several options that have been considered by state and federal agencies as a way to control the disease. However, a review of management options for controlling WNS in the paper indicates that culling is ineffective for disease control in wild animals and in some cases, can exacerbate the spread.

White-nose syndrome first appeared in a cave in upstate New York in 2006, and has since spread to 14 states and as far north as Canada. Regional extinctions of the most common bat species, the little brown bat, are predicted within two decades due to WNS.

Eating up to two-thirds of their body weight in insects every night, bats help suppress insect populations ultimately reducing crop damage and the quantities of insecticides used on crops. Bats also play an important ecological role in plant pollination and seed dissemination.

The National Institute for Mathematical and Biological Synthesis (NIMBioS) (http://www.nimbios.org) brings together researchers from around the world to collaborate across disciplinary boundaries to investigate solutions to basic and applied problems in the life sciences. NIMBioS is sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture with additional support from The University of Tennessee, Knoxville.

Citations: Hallam TG, McCracken GF. 2011. Management of the panzootic white-nose syndrome through culling of bats. Conservation Biology 25(1): 189-194.

Catherine Crawley | EurekAlert!
Further information:
http://www.nimbios.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>