Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder stem cell research may point to new ways of mitigating muscle loss

17.02.2014
New findings on why skeletal muscle stem cells stop dividing and renewing muscle mass during aging points up a unique therapeutic opportunity for managing muscle-wasting conditions in humans, says a new University of Colorado Boulder study.

According to CU-Boulder Professor Bradley Olwin, the loss of skeletal muscle mass and function as we age can lead to sarcopenia, a debilitating muscle-wasting condition that generally hits the elderly hardest.

The new study indicates that altering two particular cell-signaling pathways independently in aged mice enhances muscle stem cell renewal and improves muscle regeneration.

One cell-signaling pathway the team identified, known as p38 MAPK, appears to be a major player in making or breaking the skeletal muscle stem cell, or satellite cell, renewal process in adult mice, said Olwin of the molecular, cellular and developmental biology department. Hyperactivation of the p38 MAPK cell-signaling pathway inhibits the renewal of muscle stem cells in aged mice, perhaps because of cellular stress and inflammatory responses acquired during the aging process.

The researchers knew that obliterating the p38 MAPK pathway in the stem cells of adult mice would block the renewal of satellite cells, said Olwin. But when the team only partially shut down the activity in the cell-signaling pathway by using a specific chemical inhibitor, the adult satellite cells showed significant renewal, he said. "We showed that the level of signaling from this cellular pathway is very important to the renewal of the satellite cells in adult mice, which was a very big surprise," said Olwin.

A paper on the subject appeared online Feb. 16 in the journal Nature Medicine.

One reason the CU-Boulder study is important is that the results could lead to the use of low-dose inhibitors, perhaps anti-inflammatory compounds, to calm the activity in the p38 MAPK cell-signaling pathway in human muscle stem cells, said Olwin.

The CU-Boulder research team also identified a second cell-signaling pathway affecting skeletal muscle renewal – a receptor known as the fibroblast growth factor receptor-1, or FGFR-1. The researchers showed when the FGFR-1 receptor protein was turned on in specially bred lab mice, the renewal of satellite cells increased significantly. "We still don't understand how that particular mechanism works," he said.

Another major finding of the study was that while satellite cells transplanted from young mice to other young mice showed significant renewal for up to two years, those transplanted from old mice to young mice failed. "We found definitively that satellite cells from an aged mouse are not able to maintain the ability to replenish themselves," Olwin said. "This is likely one of the contributors to loss of muscle mass during the aging process of humans."

Co-authors included first author and CU-Boulder postdoctoral researcher Jennifer Bernet, former CU-Boulder graduate student John K. Hall, CU-Boulder undergraduate Thomas Carter, and CU-Boulder postdoctoral researchers Jason Doles and Kathleen Kelly-Tanaka. The National Institutes of Health and the Ellison Medical Foundation funded the study.

Olwin said skeletal muscle function and mass decline with age in humans beginning at roughly age 40. While there are a variety of muscle-wasting diseases -- ranging from muscular dystrophy to Lou Gehrig's disease -- the condition known as sarcopenia can lead to severe muscle loss, frailty and eventual death and is leading to skyrocketing health care costs for the elderly. "If you live long enough, you'll get it," he said.

Olwin and his team worked closely on the research with a team from Stanford University led by Professor Helen Blau, which published a companion paper in the same issue of Nature Medicine. "We shared data with the Stanford team during the entire process and we all were very pleased with the study outcomes," said Olwin. "This is how science should work."

Contact:
Bradley Olwin, 303-492-6816
bradley.olwin@colorado.edu
Jim Scott, CU-Boulder media relations, 303-492-3114
jim.scott@colorado.edu

Bradley Olwin | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>