Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CT45 – A key to long-term survival in ovarian cancer

21.09.2018

The diagnosis of ovarian cancer is still comparable to a death sentence. Only one in six patients survives more than 10 years after diagnosis. In a new study, an international research team from Germany, the USA, and Denmark, identified a molecular mechanism that is linked to patient long-term survival for those roughly 20% of the patients. By proteomic analysis, the protein CT45 was identified as a novel prognostic cancer cell marker. The authors further showed that the protein itself increases cancer cell death after platinum chemotherapy and activates the patient’s immune system. This work will be published in the renowned scientific journal Cell.

Ovarian Cancer


The protein CT45 seems one key for patient long term survival in ovarian cancer. The protein was discovered by analyzing tissue samples of cancer patients using Mass Spectrometry.

Illustration: Monika Krause © MPI of Biochemistry

Ovarian cancer is a very aggressive disease. Only every sixth patient survives more than 10 years after the first diagnosis. The majority of patients succumb to the disease within the first two years, which is mainly due to late detection of the disease when the tumor has already spread from the ovaries to the surrounding organs in the abdomen. Standard treatment involves surgical debulking followed by platinum-based chemotherapy.

“Although, for the majority of patients, this typically leads to an immediate response to therapy and reduction of tumor mass, the therapeutic effects are rarely permanent”, explains Prof. Dr. Ernst Lengyel from the University of Chicago, a world-leading gynecological oncologist. With over 42,000 deaths per year, ovarian cancer is the deadliest gynecologic malignancy in Europe.

Cause analysis

Scientists from the Max Planck Institute (MPI) of Biochemistry in Martinsried, Munich, have now in collaboration with researchers from Chicago and Copenhagen set out to elucidate the molecular basis for patient long-term survival.

"Only if we understand the molecular causes and differences between patients who respond well or poorly to therapy, will we improve the treatment of ovarian cancer in the clinic, and also pave the way for more personalized treatment options in the future" explains Lengyel, who initiated the study together with Prof. Dr. Matthias Mann, a pioneer and leading scientist in the field of mass spectrometry based proteomics. Mann is director at the MPI of Biochemistry and head of the department "Proteomics and Signal Transduction".

The DNA within our cells contains the instruction how to assemble proteins, the molecular machines that form the main players of most biological processes such as for metabolism or cellular signaling. In recent years, Mann and his team has developed and refined the technology of mass spectrometry for protein analysis to be for clinical use. "Using mass spectrometry, we can identify for the first time almost all of the proteins, the proteome, in the tumor tissue of the patients," says Mann. "Our highly sensitive methods now enable profiling thousands of proteins simultaneously, allowing us to search for the proteins that are critical to the disease by comparing the tissue samples," Prof. Mann continues.

CT45 influences long-term survival

For their analysis, the researchers used archived biobank material from the University of Chicago collected over many years, most of which originated from the initial operation of the patients. "This way, we can look back to the past in a way because we know exactly how the patient reacted to chemotherapy," says Dr. Fabian Coscia, first-author of the study and a Ph.D. student with Dr. Mann and now a postdoctoral fellow in Copenhagen.

With the help of mass spectrometry, the researchers discovered a protein called CT45, completely unknown till then, which was significantly increased in long-term survivors. Subsequent tests in the laboratory have confirmed the CT45 findings. When cancer cells produced the protein in cell culture, cells died much faster from standard chemotherapy.

CT45 a suicide gene?

But why does the cancer produce the protein CT45 if it promotes its own killing after chemotherapy? "The simple answer to this is that the cancer does not ‘know’ that it will be treated with platinum based chemotherapy" explains Coscia. "The samples we analyzed with proteomics were taken before chemotherapy. An adaptation of the tumor to the treatment has not yet taken place. We made similar observations in laboratory studies with isolated ovarian cancer cells."

Healthy cells normally only produce proteins that are needed for their specific tasks, for example, tasks typical for ovarian function. Although the blueprint for proteins, DNA, is the same in all cells, most of the protein assembly instructions are biochemically sealed. This means that only the ovary-specific "program", i.e. DNA, can be accessed. However, once a cell transforms and becomes a cancerous cell, it can lose its seal, the so-called methylation, and often proteins such as CT45 are then produced.

Currently there are the first drugs in clinical trials that have a de-methylating effect. Experiments in cell culture indicate that the effectiveness of chemotherapy can be improved by these so-called DNA-de-methylating drugs. “We suspect that CT45 plays a major role in this because it is one of the most abundant proteins in the tumor induced by the drug. This gives us hope that patients who do not have the protein in their tumor could still benefit from combination chemotherapy," says Dr. Marion Curtis, a postdoctoral fellow in the Lengyel laboratory and the last author of the study.

Blessing in disguise

The researchers have made great progress in understanding CT45’s function. This gives hope for the development of new and more targeted therapeutic approaches. "We have evidence that tumor-specific expression of CT45 stimulates the patient's immune system to fight the cancer, as it would be the case with a virus or bacterial-infected cell. "Our long-term goal is to find new ways to improve patient outcomes based on these exciting new insights," summarizes Prof. Dr. Lengyel.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried/Munich
Germany
E-mail: mmann@biochem.mpg.de
http://www.biochem.mpg.de/en/rd/mann

Originalpublikation:

Original publication:
F. Coscia, E. Lengyel, J. Duraiswamy, B. Ashcroft, M. Bassani-Sternberg, M. Wierer, A. Johnson, K. Wroblewski, A. Montag, S. D. Yamada, B. López-Méndez, J. Nilsson, A. Mund, M. Mann, and M. Curtis: Multi-level proteomics identifies CT45 as a chemosensitivity mediator and immunotherapy target in ovarian cancer, Cell, September 2018

Weitere Informationen:

http://www.biochem.mpg.de/en/20180920-coscia-mann

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Highly Organised Process: How Protein Complexes Form in the Cell
05.10.2018 | Universität Heidelberg

nachricht UCLA researchers discover aggressive prostate and lung cancers are driven by common mechanisms
05.10.2018 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying High with VCSEL Heating

Additive manufacturing processes are booming, with the rapid growth of the formnext trade fair a clear indication of this. At formnext 2018, the Fraunhofer Institute for Laser Technology ILT will be showing a new process in which the component in the powder bed is heated with laser diodes. As a result, distortion can be reduced, taller parts generated and new materials used.

In just three years, formnext has established itself as the industry meeting place to get the latest on additive manufacturing (AM) processes. With 470...

Im Focus: Breakthrough in quantum physics: Reaction of quantum fluid to photoexcitation of dissolved particles

Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet.

In his research, Markus Koch, Associate Professor at the Institute of Experimental Physics of Graz University of Technology (TU Graz), concentrates on...

Im Focus: Chemists of TU Dresden develop highly porous material, more precious than diamonds

World Record of Cavities

Porosity is the key to high-performance materials for energy storage systems, environmental technologies or catalysts: The more porous a solid state material...

Im Focus: New function of “kidney-gene”: WT1 plays a role in the central nervous system and controls movement

The WT1 gene fulfills a central role in the development of a healthy, proper functioning kidney. Mutations in WT1 lead to impairments in kidney development and cause Wilms tumors, a pediatric kidney cancer. Researchers of the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena have now discovered a further important function of WT1. It is also active outside the kidneys in the central nervous system and is involved in controlling movement. If the gene is missing in the spinal cord, locomotor aberrancies occur. The results have now been published in Life Science Alliance.

Transcription factor WT1 (Wilms tumor 1) has been known for nearly 30 years and it is significantly involved in the development of a healthy and properly...

Im Focus: Master of the tree – novel form of dendritic inhibition discovered

A unique feature that sets neurons apart from all other cells are their beautiful, highly elaborate dendritic trees. These structures have evolved to receive the vast majority of information entering a neuron, which is integrated and processed by virtue of the dendrites’ geometry and active properties. Higher brain functions such as memory and attention all critically rely on dendritic computations, which are in turn controlled by inhibitory synaptic input. A team of scientists, led by Johannes J. Letzkus (MPI for Brain Research), now has identified a novel form of inhibition that dominantly controls dendritic function and strongly depends on previous experiences.

Our brain is a remarkably complex system. It is not only comprised of billions of neurons, but each individual neuron by itself even has exceptional processing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Typical mutations in children of radar soldiers

05.10.2018 | Health and Medicine

Highly Organised Process: How Protein Complexes Form in the Cell

05.10.2018 | Life Sciences

Why does concrete swell and crack?

05.10.2018 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>