Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL team solves a protein complex's molecular structure to explain its role in gene silencing

14.11.2011
A cell's genome maintains its integrity by organizing some of its regions into a super-compressed form of DNA called heterochromatin.

In the comparatively simple organism fission yeast, a cellular phenomenon known as RNA interference (RNAi) plays an essential role in assembling heterochromatin, which keeps the compressed DNA in an inactive or "silent" state. Central to this process is a large protein complex that physically anchors various molecules involved in heterochromatin assembly to the chromatin fibers.

By probing the three dimensional structure of this protein complex, called RNA-Induced Initiation of Transcriptional gene Silencing (RITS), scientists from Cold Spring Harbor Laboratory (CSHL) and their collaborators at St. Jude's Research Hospital have discovered new details of how its various parts or "domains" contribute to heterochromatin assembly and gene silencing. The study appears in Nature Structural & Molecular Biology on Nov. 13.

"Heterochromatin formation relies on the RNAi pathway, and the RITS complex is the central, linking player that makes this possible," explains CSHL Professor and HHMI Investigator Leemor Joshua-Tor, Ph.D. The RITS complex is composed of three proteins, including Ago1, a key component of the cell's RNAi machinery. When Ago1 binds to small interfering RNAs (siRNAs) that originate from a specific genomic region, it helps shut down the activity of that genomic region.

The second member of the RITS complex is a protein called Chp1, which acts like a molecular Velcro that specifically attaches to those areas of chromatin that have been chemically marked by methyl groups. The third RITS component is a largely flexible protein called Tas3 that bridges Chp1 and Ago1.

"Our strategy to understand how these various modules of the RITS complex work has been to find out what these structures look like and how they connect to each other and to chromatin," says Joshua-Tor. For the last few years, her team has explored these questions in fission yeast.

In the current study, the combined use of X-ray crystallography and biochemisty by Research Investigator Thomas Schalch, Ph.D., has yielded a much better picture and revealed further details of how Chp1 interacts with the Tas3 protein. These experiments have also identified a previously unknown substructure at the very end of Chp1.

A clue about what role this structure, called the PIN domain, might play in heterochromatin assembly came from scouring a protein database. The team found that other proteins that had similar structural features were associated with telomeres, the cap-like structures at the end of chromosomes. In fission yeast, telomeres are one of the locations where heterochromatin is found, another being the centromere -- the dense knob-like structure at the center of a chromosome.

The team found that deleting the PIN domain from Chp1 prevented heterochromatin formation at the telomeres but didn't affect formation at the centromere. "This suggests different functions of RITS proteins at centromeres vs telomeres," says Joshua-Tor. "RITS might be exerting its effect at centromeres through Ago1 and the RNAi machinery, but might enforcing its function at the telomeres through Chp1 and its PIN domain." The team is now turning its focus to understanding how these various functions are regulated.

"The Chp1-Tas3 core is a multifunctional platform critical for gene silencing by RITS," appears in Nature Structural & Molecular Biology on Nov. 13. The full citation is Thomas Schalch, Godwin Job, Sreenath Shanker, Janet F Partridge & Leemor Joshua-Tor.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 350 scientists strong and its Meetings & Courses program hosts more than 11,000 scientists from around the world each year. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit http://www.cshl.edu.

Hema Bashyam | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>