Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL study uncovers a new exception to a decades-old rule about RNA splicing

18.05.2012
Discovery alters prevailing view of splicing regulation and has implications for splicing mutations associated with disease

There are always exceptions to a rule, even one that has prevailed for more than three decades, as demonstrated by a Cold Spring Harbor Laboratory (CSHL) study on RNA splicing, a cellular editing process. The rule-flaunting exception uncovered by the study concerns the way in which a newly produced RNA molecule is cut and pasted at precise locations called splice sites before being translated into protein.

"The discovery of this exception could impact current ideas on how missteps in splicing triggered by mutations in the DNA sequence can lead to diseases such as cancer and various genetic disorders," says CSHL Professor Adrian Krainer, Ph.D., who led the research. The study appears in the May 15 issue of Genes & Development.

For a protein to be synthesized by the cell, the instructions encoded within that protein's gene have to be first copied from DNA into RNA. This initial copy, called a pre-messenger RNA, is then edited much like film footage, where the unnecessary bits—strings of nucleotides called introns—are snipped out and the remaining bits (called exons) are spliced together. For the cut-and-paste mechanism to work correctly, the cell's splicing machinery initially has to be guided to the correct splice site at the beginning of each intron on the target pre-mRNA by another, smaller RNA called U1.

U1 finds the right spots, or splice sites, by lining up against the target RNA and pairing its own RNA nucleotides or bases (the "letters" of the RNA code, A, U, C, G) with those of the target RNA such that its A nucleotide pairs with the target's U, and its C nucleotide pairs with the target's G nucleotide, or vice-versa. U1's ability to recognize splice sites at the beginning of introns is the strongest when up to 11 bases are paired up with their partners on the target RNA, but in most cases, fewer base pairs are formed

Two years ago, Krainer and postdoctoral researcher Xavier Roca discovered, however, that the U1 RNA could recognize even seemingly imperfect splice sites that did not appear to have the correct matching RNA sequence. Instead of lining up against the first RNA base of the target intron's RNA sequence, U1 can sometimes slide down the sequence to the next base if this shift will allow more of the U1 bases to pair up with the target's bases and thereby produce a stronger match.

Krainer and Roca have now found a second, and much more prevalent, alternative option. Instead of shifting away from the first base, they show using a combination of experimental and computational approaches that one or more bases on either U1 or its target can "bulge out"—or pull away from the lineup—if this allows the surrounding nucleotides to produce a stronger match between U1 and the target.

Based on studying splice sites in about 6,500 human genes, they estimate that up to 5% of all splice sites, present in 40% of human genes use this "bulge" mechanism to be recognized. Interestingly, some of these atypically recognized sites occur within genes which when mutated lead to disease, and others are sites where alternative splicing—allowing a single pre-mRNA to give rise to different proteins—can occur.

"This study expands what we thought were the rules for splice site recognition by U1," said Michael Bender, Ph.D., who oversees RNA processing grants at the National Institutes of Health's National Institute of General Medical Sciences (NIGMS), which partially supported the study. "By extending our understanding of how the splicing process works, the findings may help us pinpoint the splicing defects that underlie certain diseases and develop new therapeutics to treat them."

The work was supported by a National Institutes of Health grant (GM42699).

"Widespread recognition of 5' splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides" appears in the May 15th issue of Genes & Development. The full citation is: Xavier Roca, Martin Akerman, Hans Gaus, Andrés Berdeja, C. Frank Bennett and Adrian R. Krainer. The paper can be downloaded at http://genesdev.cshlp.org/content/26/10/1098.full

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island.

Hema Bashyam | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: CSHL DNA End User Development Laboratory Nobel Prize RNA cold fusion genes genetic disorder

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>