Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystallizing the DNA nanotechnology dream

20.10.2014

Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices

DNA has garnered attention for its potential as a programmable material platform that could spawn entire new and revolutionary nanodevices in computer science, microscopy, biology, and more. Researchers have been working to master the ability to coax DNA molecules to self assemble into the precise shapes and sizes needed in order to fully realize these nanotechnology dreams.

For the last 20 years, scientists have tried to design large DNA crystals with precisely prescribed depth and complex features – a design quest just fulfilled by a team at Harvard's Wyss Institute for Biologically Inspired Engineering. The team built 32 DNA crystals with precisely-defined depth and an assortment of sophisticated three-dimensional (3D) features, an advance reported in Nature Chemistry.

The team used their "DNA-brick self-assembly" method, which was first unveiled in a 2012 Science publication when they created more than 100 3D complex nanostructures about the size of viruses. The newly-achieved periodic crystal structures are more than 1000 times larger than those discrete DNA brick structures, sizing up closer to a speck of dust, which is actually quite large in the world of DNA nanotechnology.

"We are very pleased that our DNA brick approach has solved this challenge," said senior author and Wyss Institute Core Faculty member Peng Yin, Ph.D., who is also an Associate Professor of Systems Biology at Harvard Medical School, "and we were actually surprised by how well it works."

Scientists have struggled to crystallize complex 3D DNA nanostructures using more conventional self-assembly methods. The risk of error tends to increase with the complexity of the structural repeating units and the size of the DNA crystal to be assembled.

The DNA brick method uses short, synthetic strands of DNA that work like interlocking Lego® bricks to build complex structures. Structures are first designed using a computer model of a molecular cube, which becomes a master canvas. Each brick is added or removed independently from the 3D master canvas to arrive at the desired shape – and then the design is put into action: the DNA strands that would match up to achieve the desired structure are mixed together and self assemble to achieve the designed crystal structures.

"Therein lies the key distinguishing feature of our design strategy—its modularity," said co-lead author Yonggang Ke, Ph.D., formerly a Wyss Institute Postdoctoral Fellow and now an assistant professor at the Georgia Institute of Technology and Emory University. "The ability to simply add or remove pieces from the master canvas makes it easy to create virtually any design."

The modularity also makes it relatively easy to precisely define the crystal depth. "This is the first time anyone has demonstrated the ability to rationally design crystal depth with nanometer precision, up to 80 nm in this study," Ke said. In contrast, previous two-dimensional DNA lattices are typically single-layer structures with only 2 nm depth.

"DNA crystals are attractive for nanotechnology applications because they are comprised of repeating structural units that provide an ideal template for scalable design features", said co-lead author graduate student Luvena Ong.

Furthermore, as part of this study the team demonstrated the ability to position gold nanoparticles into prescribed 2D architectures less than two nanometers apart from each other along the crystal structure – a critical feature for future quantum devices and a significant technical advance for their scalable production, said co-lead author Wei Sun, Ph.D., Wyss Institute Postdoctoral Fellow.

"My preconceived notions of the limitations of DNA have been consistently shattered by our new advances in DNA nanotechnology," said William Shih, Ph.D., who is co-author of the study and a Wyss Institute Founding Core Faculty member, as well as Associate Professor in the Department of Biological Chemistry and Molecular Pharmacology at Harvard Medical School and the Department of Cancer Biology at the Dana-Farber Cancer Institute. "DNA nanotechnology now makes it possible for us to assemble, in a programmable way, prescribed structures rivaling the complexity of many molecular machines we see in Nature."

"Peng's team is using the DNA-brick self-assembly method to build the foundation for the new landscape of DNA nanotechnology at an impressive pace," said Wyss Institute Founding Director Don Ingber, M.D., Ph.D. "What have been mere visions of how the DNA molecule could be used to advance everything from the semiconductor industry to biophysics are fast becoming realities."

###

The work involved collaborators from Aarhus University in Denmark and was supported by the Office of Naval Research (ONR), the Army Research Office (ARO), the National Science Foundation (NSF), the National Institutes of Health (NIH), and the Wyss Institute for Biologically Inspired Engineering at Harvard University.

About the Wyss Institute for Biologically Inspired Engineering at Harvard University

The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among all of Harvard's Schools, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité - Universitätsmedizin Berlin, and the University of Zurich, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.

Kat J. McAlpine | Eurek Alert!

Further reports about: CANCER Crystallizing DNA DNA nanotechnology Harvard crystals self-assembly structures

More articles from Life Sciences:

nachricht Researchers at the University of Freiburg use new method to investigate neural oscillations
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Dragonflies move to the city
14.02.2020 | Technische Universität Braunschweig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>