Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal growth kinetics and its link to evolution. New findings about biomineralization in molluscan shells

24.09.2019

The research group of Dr. Igor Zlotnikov from the Center for Molecular Bioengineering (B CUBE) of TU Dresden demonstrate in its latest publication that the physics of materials has a strong impact on the possible structures that molluscan shells can produce. This research shows how fundamental physical laws, such as crystal growth kinetics and thermodynamics, can constrain the outcome of evolution and helps explain why we see the repeated development of certain structures through deep time.

Molluscan shells consist of a variety of complex mineral-organic composite ultrastructures. Surprisingly, in some cases, shells from distantly related species contain similar morphological motifs on many different length scales, from the nano- to the micro-scale.


Left - The ultrastructure of the shell Nautilus pompilius, Right – Simulated ultrastructure of the shell on the left.

© Igor Zlotnikov, Tamás Pusztai, László Gránásy

During the last few decades, significant progress has been made in understanding the key biochemical mechanisms responsible for biogenic mineral formation.

However, little is known on how the organisms control the form of the individual mineral building blocks comprising the different shell architectures and consequently, determine the morphology of these species-specific mineral-organic assemblies.

The Zlotnikov research group in collaboration with scientists from the Wigner Research Centre for Physics in Budapest, Hungary now developed a comprehensive experimental and theoretical framework to analytically describe the process of ultrastructural morphogenesis of molluscan shells.

Mainly, they demonstrated that the formation of these highly biomineralized tissues is guided by the organisms by regulating the chemical and physical boundary conditions that control the growth kinetics of the mineral phase.

By showing a direct link between physics of materials and the process of biomineralized tissue morphogenesis, the team sheds a new light on the evolutionary aspect of the fabrication of biological materials.

Wissenschaftliche Ansprechpartner:

Dr. Igor Zlotnikov
Tel: +49 351 463-43090
Email: igor.zlotnikov@tu-dresden.de
Webpage: www.tu-dresden.de/bcube

Originalpublikation:

Crystal growth kinetics as an architectural constraint on the evolution of molluscan shells. Vanessa Schoeppler, Robert Lemanis, Elke Reich, Tamás Pusztai, László Gránásy, and Igor Zlotnikov. PNAS. 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1907229116

Kim-Astrid Magister | Technische Universität Dresden
Further information:
http://www.tu-dresden.de

More articles from Life Sciences:

nachricht New deep-water coral discovered
22.10.2019 | Smithsonian Tropical Research Institute

nachricht DNA-reeling bacteria yield new insight on how superbugs acquire drug-resistance
22.10.2019 | Indiana University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New deep-water coral discovered

22.10.2019 | Life Sciences

DNA-reeling bacteria yield new insight on how superbugs acquire drug-resistance

22.10.2019 | Life Sciences

Heat Pumps with Climate-Friendly Refrigerant Developed for Indoor Installation

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>