Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cryo-EM reveals 'crown-like' structure of protein responsible for regulating blood flow

07.12.2017

A team led by scientists at Van Andel Research Institute (VARI) has revealed for the first time the atomic-level structure of a promising drug target for conditions such as stroke and traumatic brain injury.

Called TRPM4, this protein is found in tissues throughout the body, including the brain, heart, kidney, colon and intestines, where it plays a major role in regulating blood flow via blood vessel constriction as well as setting the heart's rhythm and moderating immune responses.


Human TRPM4 bound with the agonist Ca+ and modulator DVT at 3.8 Å.

Courtesy of Wei Lü, Ph.D.

Usage Restrictions: Use only in relation to this news release. Always credit Wei Lü, Ph.D.

"Understanding the role TRPM4 plays in regulating circulation is vital, but for years research has been limited by a lack of insight about its molecular architecture," said Wei Lü, Ph.D., an assistant professor at VARI and lead author on a study describing TRPM4's structure, published today in Nature. "Our findings not only provide a detailed, atomic-level map of this critical protein, but also reveal completely unexpected facets of its makeup."

TRPM4 is critically involved in regulating the blood supply to the brain, which comprises only about 2 percent of the body's total weight yet receives 15 to 20 percent of its blood supply. Conditions that disrupt blood flow in the brain, such as stroke, traumatic brain injury, cerebral edema and hypertension, can have devastating consequences and are significant public health problems.

"Many safeguards exist in the brain's circulatory system to protect against a sudden interruption in blood supply, one of which is TRPM4," Lü said. "We hope that a better understanding of what this protein looks like will give scientists a molecular blueprint on which to base the design of more effective medications with fewer side effects."

The structure of TRPM4 is markedly different from the other molecules in the TRP superfamily, a category of proteins that mediate responses to sensations and sensory stimuli, such as pain, pressure, vision, temperature and taste. Broadly known as ion channels, proteins like TRP nestle within cells' membranes, acting as gatekeepers for chemical signals passing into and out of the cell.

Even within its own subfamily, which comprises eight molecules in total, TRPM4 appears to be wholly unique. Today's publication represents the first atomic view of a member of the TRPM subfamily.

It reveals a crown-like structure, with the four peaks composing a large N-terminal domain--a hallmark of TRPM proteins. This region, found at the start of the molecule, is a major site of interaction with the cellular environment and other molecules in the body. On the opposite end of TRPM4, commonly called the C-terminal domain, Lü's team found an umbrella-like structure supported by a "pole" and four helical "ribs"--characteristics that have never before been observed.

The findings were made possible by VARI's state-of-the-art David Van Andel Advanced Cryo-Electron Microscopy Suite, which allows scientists to view some of life's smallest components in exquisite detail. VARI's largest microscope, the Titan Krios, is one of fewer than 120 in the world and is so powerful that it can visualize molecules 1/10,000th the width of a human hair.

Lü's structure is the second molecular structure determined on the Institute's Krios since completion of the suite's installation earlier this year.

###

In addition to Lü, VARI Assistant Professor Juan Du, Ph.D., also is an author on today's paper. Paige A. Winkler, Ph.D., and Yihe Huang, Ph.D., both postdoctoral fellows in Lü's lab, and Weinan Sun, Ph.D., a postdoctoral associate in the Spruston Lab at Howard Hughes Medical Institute Janelia Research Campus, are co-first authors.

ABOUT VAN ANDEL RESEARCH INSTITUTE

Van Andel Institute (VAI) is an independent nonprofit biomedical research and science education organization committed to improving the health and enhancing the lives of current and future generations. Established by Jay and Betty Van Andel in 1996 in Grand Rapids, Michigan, VAI has grown into a premier research and educational institution that supports the work of more than 360 scientists, educators and staff. Van Andel Research Institute (VARI), VAI's research division, is dedicated to determining the epigenetic, genetic, molecular and cellular origins of cancer, Parkinson's and other diseases and translating those findings into effective therapies. The Institute's scientists work in onsite laboratories and participate in collaborative partnerships that span the globe. Learn more about Van Andel Institute or donate by visiting http://www.vai.org. 100% To Research, Discovery & Hope®

Media Contact

Beth Hinshaw Hall
beth.hinshawhall@vai.org
616-234-5519

http://www.vai.org 

Beth Hinshaw Hall | EurekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>