Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crossing the line

06.09.2010
Understanding of blood cell lineages advances with the discovery of a transcription factor crucial to T cell differentiation

A master gene that underpins the development of specific blood cell lineages has been identified by a research team led by Hiroshi Kawamoto at the RIKEN Research Center for Allergy and Immunology in Yokohama. The team has published its findings in the journal Science1.

Precursor cells in the immune system, known as hematopoietic progenitor cells, can give rise to multiple immune cell types. Kawamoto and his team cultured multipotent progenitor cells from mice that could become T cells that shape the immune response, B cells that generate antibodies, or myeloid cells that can engulf pathogens. Their special culture system could stimulate the Notch signaling pathway, which is required for progenitor cell renewal, and included immune system regulators such as interleukin-7 (IL-7).

The researchers found they could induce the immune progenitor cells to lose their ability to become B cells under these conditions. However, this halted development of the cells past this stage, as the progenitors were unable to cease proliferating and mature into either T cells or myeloid cells.

Kawamoto and colleagues then observed that removing IL-7 from the cell culture medium was sufficient to drive the progenitors to mature into T cells. They found that withdrawing IL-7 induced the expression of the transcription factor Bcl11b, which is known to be expressed in T cells. Interestingly, even when IL-7 was present in the cell culture medium, they could push immune progenitor cells into becoming T cells by forcing Bcl11b to be expressed in the cells. This suggested to the researchers that this transcription factor drives this step in the commitment of these immune progenitor cells to the T cell lineage.

The team also showed that progenitor cells lacking the Bcl11b gene were unable to mature into T cells, and could continue to proliferate (Fig. 1). This is consistent with previous findings by other research teams that disruption of the function of Bcl11b is linked to leukemia and lymphoma, which may be caused by the inability of the progenitor cells to mature properly into T cells, and to instead continue to proliferate. Kawamoto and his colleagues think that Bcl11b may drive progenitor cells to take on the T cell fate by suppressing the genes that characterize the myeloid cell lineage.

“Our findings may facilitate the study of the molecular mechanisms of T cell lineage commitment by elucidating the exact timing for this commitment,” explains Kawamoto, “and by identifying a master gene for the establishment of T cell lineage.”

The corresponding author for this highlight is based at the Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology

Journal information

1. Ikawa, T., Hirose, S., Masuda, K., Kakugawa, K., Satoh, R., Shibano-Satoh, A., Kominami, R., Katsura, Y. & Kawamoto, H. An essential developmental checkpoint for production of the T cell lineage. Science 329, 93–96 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6380
http://www.researchsea.com

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>