Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crocodile and hippopotamus served as 'brain food' for early human ancestors

10.06.2010
Your mother was right: Fish really is "brain food." And it seems that even pre-humans living as far back as 2 million years ago somehow knew it.

A team of researchers that included Johns Hopkins University geologist Naomi Levin has found that early hominids living in what is now northern Kenya ate a wider variety of foods than previously thought, including fish and aquatic animals such as turtles and crocodiles.

Rich in protein and nutrients, these foods may have played a key role in the development of a larger, more human-like brain in our early forebears, which some anthropologists believe happened around 2 million years ago, according to the researchers' study.

"Considering that growing a bigger brain requires many nutrients and calories, anthropologists have posited that adding meat to their diet was key to the development of a larger brain," said Levin, an assistant professor in the Morton K. Blaustein Department of Earth and Planetary Sciences at Johns Hopkins' Krieger School of Arts and Sciences. "Before now, we have never had such a wealth of data that actually demonstrates the wide variety of animal resources that early humans accessed." Levin served as the main geologist on the team, which included scientists from the United States, South Africa, Kenya, Australia and the United Kingdom.

... more about:
»Africa »CROCODILE »stone tools

A paper on the study was published recently in Proceedings of the National Academy of Sciences and offers first-ever evidence of such dietary variety among early pre-humans.

In 2004, the team discovered a 1.95 million-year-old site in northern Kenya and spent four years excavating it, yielding thousands of fossilized tools and bones. According to paper's lead author David Braun of the University of Cape Town (South Africa), the site provided the right conditions to preserve those valuable artifacts.

"At sites of this age, we often consider ourselves lucky if we find any bone associated with stone tools. But here, we found everything from small bird bones to hippopotamus leg bones," Braun said.

The preservation of the artifacts was so remarkable, in fact, that it allowed the team to meticulously and accurately reconstruct the environment, identifying numerous fossilized plant remains and extinct species that seem to be a sign that these early humans lived in a wet -- and possibly even a marshy -- environment.

"Results from stable isotopic analysis of the fossil teeth helped refine our picture of the paleoenvironment of the site, telling us that the majority of mammals at the site subsisted on grassy, well-watered resources," Levin said. "Today, the Turkana region in northern Kenya is an extremely dry and harsh environment. So, clearly, the environment of this butchery site was very different 1.95 million years ago -- this spot was much wetter and lush."

Using a variety of techniques, the team was able to conclude that the hominids butchered at least 10 individual animals -- including turtles, fish, crocodiles and antelopes -- on the site for use as meals. Cut marks found on the bones indicate that the hominids use simple, sharp-edged stone tools to butcher their prey.

"It's not clear to us how early humans acquired or processed the butchered meat, but it's likely that it was eaten raw," Levin said.

The team theorizes that the wet and marshy environment gave early pre-humans a way to increase the protein in their diets (and grow larger brains!) while possibly avoiding contact with larger carnivores, such as hyenas and lions.

This research was supported by the National Science Foundation-International Research Fellowship Program, the Rutgers University Center for Human Evolutionary Studies, the University of Cape Town, the Palaeontological Scientific Trust, a University of South Wales Faculty of Medicine research grant, and an Australian Research Council Discovery Grant.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu
http://eps.jhu.edu/bios/naomi-levin/index.html

Further reports about: Africa CROCODILE stone tools

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>