Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting duplicated genome segments now possible

01.09.2009
Numbers can vary from person to person

A newly designed computational method has proven its usefulness in counting copies of duplicated genome sequences and in doing initial assessments of their contents, according to a study to be published Aug. 30 in Nature Genetics. The number of copies of particular DNA segments can differ from one person to the next.

The researchers named their method mrFAST, an acronym for micro-read Fast Alignment Search Tool. The study is titled, "Personalized Copy Number and Segmental Duplication Maps Using Next Generation Sequencing." The lead authors are Dr. Can Alkan, a senior fellow, and Jeffrey M. Kidd, a graduate student, both in the Department of Genome Sciences at the University of Washington (UW). Dr. Evan E. Eichler, UW professor of genome sciences, is the senior author.

Segmental duplications in the human genome have been associated with susceptibility and resistance to disease. Duplicated segments have been linked to such disorders as lupus, Crohn's disease, mental retardation, schizophrenia, color blindness, psoriasis, and age-related macular degeneration. Segmental duplications often contain duplicated genes, many of which have an unknown function. Individuals have different numbers of copies of some of these duplications. Determining the number, content, and location of segmental duplications is an important step in understanding the health significance of gene copy-number variation.

"New computational methods, combined with next-generation DNA sequencing technology, has provided for the first time an accurate census of specific genes that exist in varying number of copies," Alkan said.

"This is a way to deal with some of the most complex regions of the human genome and do what might appear to be a simple thing: Count whether a person has one, two, three or more copies of a gene," explained Kidd. "In fact, such counting is surprisingly difficult." Many standard genome analyses exclude duplication-rich or repeat-rich regions of the human genomes because their sequences are not unique.

Before this study, by using different methods scientists could analyze the entire genome of a person and say that an individual has more or fewer copies of a particular gene, but not the absolute number of copies. For example, scientists have known that some people have an increased copy-number of a gene that confer some resistance to HIV, but couldn't tell how many.

The UW researchers further examined the much-studied genomes from three healthy individuals: a European (DNA research pioneer James D. Watson), a Yoruban African individual from Nigeria, and a Han Chinese. The researchers were able to predict copy-number differences among the individuals, even when there were many copies, such as 5 in one person compared to 12 in another. The researchers conservatively validated 113 genes that were copy-number variable among the three people, but more genes are suspected to be copy-number variable. Several of the validated gene differences are known to be of biomedical relevance. They include, for example, genes related to eye and skin diseases, and many others that play a role in the immune system. The researchers noted that several human genes with the most variable copy numbers correspond to a torrent of segmental duplications that occurred within the common ancestor of apes and humans.

In talking about their study, the researchers mentioned that next-generation technology for sequencing the human genome has far greater detection power and costs substantially less than the traditional sequencing method known as Sanger sequencing. The new technologies are beginning to distinguish subtle dissimilarities between nearly identical gene copies.

"This can provide researchers with a more accurate assessment of specific gene content and insight into functional constraints," Alkan explained.

"The newer, faster genome sequencing platforms," Alkan added, "may eventually make it feasible to detect the full-spectrum of genomic variation among many individuals, including patients suffering from diseases of genetic origin. Next-generation technology and computational methods promise low cost, rapid sequencing of different individuals and may lead to a fuller understanding of the patterns and significance of human genetic variation."

The analytical method they devised is already being tapped for the 1000 Genome Project, an international effort to catalog and compare the genomes of hundreds of people from around the world.

Alkan, Kidd, and their colleagues noted that copy number variants, including variable duplications of entire genes, are recognized as making substantial contributions to human diversity.

The ability to accurately and systematically determine the absolute copy number for any genomic segment is a notable step, the researchers added, toward a true and complete picture of individual genomes and how the genome shapes a person's characteristics.

"The next challenge," they wrote, "will be defining variation in the sequence content and the structural organization of these dynamic and important regions of the human genome."

In addition to Alkan and Kidd, other scientists working on the project were Tomas Marques-Bonet, Gozde Aksay, Francesca Antonacci, Jacob O. Kitzman, Carl Baker, Maika Malig, and Evan E. Eichler from UW Genome Sciences; Fereydoun Hormozdiari, and S. Cenk Sahinalp from Simon Fraser University School of Computing Sciences; Onur Mutlu from the Department of Electrical and Computer Engineering, Carnegie Mellon University; and Richard Gibbs from Baylor College of Medicine.

The research was supported by the U.S. National Science Foundation, the National Institutes of Health and the Howard Hughes Medical Institute.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>