Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could dark carbon be hiding the true scale of ocean 'dead zones'?

10.12.2019

Dead zones within the world's oceans - where there is almost no oxygen to sustain life - could be expanding far quicker than currently thought, a new study suggests.

The regions are created when large amounts of organic material produced by algae sinks towards the seafloor, using up the oxygen present in the deep water.


This is one of the sediment samples gathered from the floor of the Arabian Sea.

Credit: Sabine Lengger, University of Plymouth

Computer models can predict the spread of these zones, with the aim being to provide an insight into the impact they might have on the wider marine environment.

However, a study published in Global Biogeochemical Cycles suggests that dark carbon fixation - caused by the presence of anaerobic bacteria in the deeper water column - needs to be incorporated into these models.

The research was led by Dr Sabine Lengger, a scientist at the University of Plymouth, and involved researchers from universities in the UK and the Netherlands.

They measured the stable isotopes of organic carbon in sediment cores taken from the floor of the Arabian Sea, one of the world's large natural dead zones, in order to get a clear understanding about what is contributing to the organic matter contained within them.

This value is a mixture of all the distinct signatures from all the organisms that produced this carbon - thought to be mostly algae and bacteria living in the oxygen-rich, light, surface ocean where it sinks from.

However, using a distinct biomarker produced by anaerobic bacteria, they suggest that around one fifth of the organic matter on the seafloor could in fact stem from bacteria living in or around these dead zones.

In the paper, the scientists say this casts doubt on current predictions around the impact of increasing atmospheric carbon dioxide concentrations, and consequent rising temperatures.

They in fact believe the dead zones could be expanding much faster than previously thought, and that future calculations must take the bacteria into account in order to accurately predict the full impacts of climate change and human activity on the marine environment.

The new study adds to warnings issued at COP25 by the International Union for the Conservation of Nature (IUCN), where it was reported that the number of known hypoxic dead zones has skyrocketed from 45 to 700 sites.

Dr Lengger, an organic and isotope biogeochemist at Plymouth, said: "With global warming, and increased nutrients from rivers, oceanic dead zones are forecast to expand. They can draw down carbon and store it in the deep ocean, but as they expand can have devastating effects on marine life, as well as people that are economically reliant on fisheries.

Our study shows that organic matter that sinks to the seafloor is not just coming from the sea surface, but includes a major contribution from bacteria that live in the dark ocean and can fix carbon as well. Existing models could be missing out on a key contribution as a result of which people have underestimated the extent of the oxygen depletion we are to expect in a future, warming world.

"Our findings explain some of the mismatches in carbon budgets when experimental and modelling estimates are compared - and it should therefore be included in biogeochemical models predicting feedbacks to a warming world. It is imperative to refine predictions in biogeochemical models as if dead zones will intensify more than expected (something which has already been observed), this will have severe ecological, economic and climatic consequences."

Media Contact

Alan Williams
alan.williams@plymouth.ac.uk
0044-175-258-8004

 @PlymUni

http://www.plymouth.ac.uk 

Alan Williams | EurekAlert!
Further information:
https://www.plymouth.ac.uk/news/could-dark-carbon-be-concealing-the-true-scale-of-ocean-dead-zones
http://dx.doi.org/10.1029/2019GB006282

More articles from Life Sciences:

nachricht Why developing nerve cells can take a wrong turn
04.06.2020 | Universität zu Köln

nachricht Innocent and highly oxidizing
04.06.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>