Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corked Microbottles

16.09.2013
Melting corks allow for temperature-controlled release of drugs from microscale vessels

Sustained-release formulations that release drugs over longer periods of time are not the final step in the evolution of “intelligent” drug delivery systems. Modern pharmaceuticals are being designed to be released only in a specific, diseased organ; on cues from our circadian rhythm; or under specific physiological conditions.

In the journal Angewandte Chemie, a team of American and Korean researchers has now introduced “microbottles” with “corks” that release their contents only when the temperature rises above a defined level.

Our circadian rhythms can cause our reaction to a drug to vary with time. Certain conditions and symptoms can also fluctuate with our circadian rhythm. Some pharmaceuticals, such as beta blockers, chemotherapy drugs, and cortisone treatments thus come with recommendations for timing doses. The “intelligent” control drug release based on changing physiological conditions is an extension of these ideas.

Temperature in particular could be a useful regulator for such systems. Our body temperature varies throughout the day and in response to certain physiological states or phases, like disease. An “intelligent” blood pressure reducing drug could be released when body temperature and blood pressure rise due to stress. Inflammation usually causes the temperature of the affected area to rise, so a drug could be directed only to these hot areas. Alternatively, a diseased area of the body, such as a tumor, could be locally warmed to release chemotherapy drugs on the spot, causing fewer side effects.

Previous types of temperature-controlled microcontainers suffered from a slow loading process, low cargo capacity, or premature release of the drug. Younan Xia and a team at the Georgia Institute of Technology, Emory University in Atlanta (USA), and Yonsei University in Seoul (Korea) have now developed a new variety of corked “microbottle” for drugs. The cork melts at a defined temperature and releases the bottle’s contents.

To produce their capsules, the researchers embedded the bottom half of some polystyrene spheres in a thin polymer film and soaked them with a mixture of toluene and water. Because toluene and water do not mix well, the toluene diffused into the spheres. The spheres were then flash-frozen and freeze-dried. The toluene evaporated, exiting trough the tops of the spheres, leaving behind an opening and a cavity. Now the little bottles can quickly and easily be filled.

To cork the bottles, the researchers applied a film of the cork material to a support and pressed it onto the support holding the vessels. Ethanol vapors cause the cork material to flow together around the vessels, hermetically sealing them. By changing the ratio of the materials used in the corks, tetradecanol and lauric acid, the melting points of the corks can be adjusted into a biologically useful range.

About the Author
Dr. Younan Xia is the Brock Family Chair and GRA Eminent Scholar in Nanomedicine at Georgia Institute of Technology and Emory University. His research interests include nanomaterials, biomaterials, drug delivery, controlled release, nanomedicin, regenerative medicine, and catalysis. He recently received a National Award in the Chemistry of Materials from the American Chemical Society.
Author: Younan Xia, Georgia Institute of Technology and Emory University, Atlanta (USA), http://www.chemistry.gatech.edu/people/Xia/Younan
Title: Microscale Polymer Bottles Corked with a Phase-Change Material for Temperature-Controlled Release
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201305006

Copy free of charge. We would appreciate a transcript of your article or a reference to it.

The original article is available from our online pressroom at http://pressroom.angewandte.org.

Younan Xia | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chemistry.gatech.edu/people/Xia/Younan

More articles from Life Sciences:

nachricht All-in-one: New microbe degrades oil to gas
20.08.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht New artificial compound eye could improve 3D object tracking
20.08.2019 | The Optical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

All-in-one: New microbe degrades oil to gas

20.08.2019 | Life Sciences

Spinning lightwaves on a one-way street

20.08.2019 | Physics and Astronomy

Materials that can revolutionize how light is harnessed for solar energy

20.08.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>