Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corked Microbottles

16.09.2013
Melting corks allow for temperature-controlled release of drugs from microscale vessels

Sustained-release formulations that release drugs over longer periods of time are not the final step in the evolution of “intelligent” drug delivery systems. Modern pharmaceuticals are being designed to be released only in a specific, diseased organ; on cues from our circadian rhythm; or under specific physiological conditions.

In the journal Angewandte Chemie, a team of American and Korean researchers has now introduced “microbottles” with “corks” that release their contents only when the temperature rises above a defined level.

Our circadian rhythms can cause our reaction to a drug to vary with time. Certain conditions and symptoms can also fluctuate with our circadian rhythm. Some pharmaceuticals, such as beta blockers, chemotherapy drugs, and cortisone treatments thus come with recommendations for timing doses. The “intelligent” control drug release based on changing physiological conditions is an extension of these ideas.

Temperature in particular could be a useful regulator for such systems. Our body temperature varies throughout the day and in response to certain physiological states or phases, like disease. An “intelligent” blood pressure reducing drug could be released when body temperature and blood pressure rise due to stress. Inflammation usually causes the temperature of the affected area to rise, so a drug could be directed only to these hot areas. Alternatively, a diseased area of the body, such as a tumor, could be locally warmed to release chemotherapy drugs on the spot, causing fewer side effects.

Previous types of temperature-controlled microcontainers suffered from a slow loading process, low cargo capacity, or premature release of the drug. Younan Xia and a team at the Georgia Institute of Technology, Emory University in Atlanta (USA), and Yonsei University in Seoul (Korea) have now developed a new variety of corked “microbottle” for drugs. The cork melts at a defined temperature and releases the bottle’s contents.

To produce their capsules, the researchers embedded the bottom half of some polystyrene spheres in a thin polymer film and soaked them with a mixture of toluene and water. Because toluene and water do not mix well, the toluene diffused into the spheres. The spheres were then flash-frozen and freeze-dried. The toluene evaporated, exiting trough the tops of the spheres, leaving behind an opening and a cavity. Now the little bottles can quickly and easily be filled.

To cork the bottles, the researchers applied a film of the cork material to a support and pressed it onto the support holding the vessels. Ethanol vapors cause the cork material to flow together around the vessels, hermetically sealing them. By changing the ratio of the materials used in the corks, tetradecanol and lauric acid, the melting points of the corks can be adjusted into a biologically useful range.

About the Author
Dr. Younan Xia is the Brock Family Chair and GRA Eminent Scholar in Nanomedicine at Georgia Institute of Technology and Emory University. His research interests include nanomaterials, biomaterials, drug delivery, controlled release, nanomedicin, regenerative medicine, and catalysis. He recently received a National Award in the Chemistry of Materials from the American Chemical Society.
Author: Younan Xia, Georgia Institute of Technology and Emory University, Atlanta (USA), http://www.chemistry.gatech.edu/people/Xia/Younan
Title: Microscale Polymer Bottles Corked with a Phase-Change Material for Temperature-Controlled Release
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201305006

Copy free of charge. We would appreciate a transcript of your article or a reference to it.

The original article is available from our online pressroom at http://pressroom.angewandte.org.

Younan Xia | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chemistry.gatech.edu/people/Xia/Younan

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>