Copper catalyst recycles carbon dioxide

Versatile reaction could help greenhouse gas become a more useful synthetic chemical

RIKEN chemists have developed a catalyst that should allow carbon dioxide to be used as a versatile synthetic chemical.

Carbon dioxide (CO2) is produced whenever fossil fuels are burned, and it is a powerful greenhouse gas that traps heat in our atmosphere, contributing to global warming. As such, turning the gas into a chemical feedstock, rather than allowing it to escape into the atmosphere, is an extremely appealing idea.

In fact, industry has long used carbon dioxide as a chemical building block—in the manufacture of the painkiller aspirin, for example—but its use is limited by the difficulty of breaking open its strong carbon-oxygen double bonds.

Carbon compounds activated by lithium or magnesium are often needed to attack and incorporate carbon dioxide successfully, but these reagents are extremely reactive and quite hazardous on a large scale.

Chemists have recently developed milder, boron-based alternatives, which require a rhodium catalyst to speed up the reaction. Unfortunately, this catalyst tends to break down particularly sensitive chemical groups in the product.

Zhaomin Hou, of RIKEN's Advanced Science Institute, Wako, along with colleagues Takeshi Ohishi and Masayoshi Nishiura, has now developed a copper catalyst that helps the boron compounds to react with carbon dioxide without destroying sensitive chemical groups.

This makes the reaction particularly useful for building complex molecules containing several different types of chemical group, something that would not be possible with the harsh lithium reagents. “We have tried many different metal compounds, among which the copper catalyst was the best,” says Hou.

The team was also able to study exactly how the catalyst works, by isolating key molecules at various intermediate stages of the reaction. They found that the active copper catalyst first displaces the boron group from the starting molecule, forming a new copper–carbon bond. Carbon dioxide then inserts itself into this bond before the copper catalyst is finally removed, leaving behind a carboxylic acid (-CO2H) group1.

Various forms of the boron compounds, known as boronic esters, are commercially available, says Hou. “And they can also be easily prepared in the lab.”

Hou adds that their method is also amenable to large-scale, commercial synthesis. “Since CO2 is a renewable carbon resource, exploration of new reactions and catalysts for its efficient use is of great importance,” he says. “One of our goals is to find a catalyst that can transform CO2 in exhaust gasses of automobile vehicles or chemical plants into useful materials.”

1. Ohishi, T., Nishiura, M. & Hou, Z. Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper(I) complexes. Angewandte Chemie International Edition 47, 5792–5795 (2008)

The corresponding author for this highlight is based at the RIKEN Organometallic Chemistry Laboratory

Media Contact

Saeko Okada ResearchSEA

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors