Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper-aluminum superatom

26.09.2018

On the outside, the cluster made of 55 copper and aluminum atoms looks like a crystal, but chemically it has the properties of an atom. The heterometallic superatom which chemists of the Technical University of Munich (TUM) have created provides the prerequisites for developing new, more cost-effective catalysts.

Chemistry can be expensive. For example, platinum is used to clean exhaust gases. This precious metal acts as a catalyst which speeds up chemical reactions. Without catalysts, it would not be possible to carry out a large number of processes in the chemical industry.


43 copper and 12 aluminum atoms form a cluster that has the properties of an atom. The heterometallic superatom is the largest ever produced in the laboratory.

Christian Gemel / TUM

"Many groups of researchers are experimenting with new material compounds made of lower-cost base metals such as iron, copper, or aluminum. However, so far nobody has been able to predict whether, how, and why these catalysts react", explains Roland Fischer, Professor for Inorganic and Metal-Organic Chemistry at the TUM. "Our goal was to bridge this gap and to create the basis for understanding a new generation of catalysts."

Bottom-up approach yields results

Together with his team, the chemist has now uncovered a secret of base metal compounds. "What was new about our approach was that we did not examine existing materials, but instead went bottom-up and built compounds made of individual copper and aluminum atoms", explains Fischer.

Combining two metals at the atomic level requires no small amount of know-how and finesse: Within a protective argon atmosphere, the chemists combined the metal atoms which were bound to organic compounds in a test tube, to which they then added a solvent.

"Naturally, we hoped that the copper and aluminum atoms would separate from the organic compounds and form a cluster together. But whether they would actually do that and what the result would be was entirely unclear", remembers Fischer.

The secret of the crystals

Hence, the chemists were extremely delighted to find that reddish-black particles with a diameter of up to one millimeter had formed at the bottom of the test tube. X-ray images revealed an extremely complex structure: In each case, 55 copper and aluminum atoms were arranged such that they formed a crystal whose surface consisted of 20 equilateral triangles.

Crystallographers call such shapes icosahedrons Additional experiments showed that chemically, the crystals react like an individual copper atom and are also paramagnetic, which means that they are attracted by a magnetic field.

An explanation for the extraordinary properties of the metal clusters was provided by Prof. Jean-Yves Saillard from the French university in Rennes: According to him, 43 and 12 aluminum atoms organize themselves into a "superatom" in which the metals form a shared electron shell which resembles that of a single metal atom.

Hence, the cluster has the chemical properties of an atom. Located on the outermost shell are three valence electrons whose spins align themselves in a magnetic field — hence the observed paramagnetism.

Knowledge base for new catalysts

The heterometallic superatom by the researchers in Munich is the largest one ever made in the lab. "That it formed spontaneously, i.e. without the input of energy, out of a solution is an extremely remarkable outcome", emphasizes Fischer. "It shows that the arrangement of 55 atoms constitutes an island of stability and hence determines the direction in which the chemical reaction takes place."

The researchers now intend to use the findings of the research project to develop fine-grained and hence highly effective catalyst materials. "We are still far away from being able to use it in applications", emphasizes Fischer. "But based on what we have now achieved, we can verify the suitability of copper-aluminum clusters for catalytic processes and also create clusters made of other promising metals."

Further information:

The project was funded by the German Research Foundation (DFG), the Alexander von Humboldt Foundation, and the German Chemical Industry Fund (FCI). Computing time was provided by the French Supercomputing Center GENCI.

Publication:

Jana Weßing, Chelladurai Ganesamoorthy, Samia Kahlal, Rémi Marchal, Christian Gemel, Olivier Cador, Augusto C.H. Da Silva, Juarez L. F. Da Silva, Jean-Yves Saillard and Roland A. Fischer:
The Mackay-type cluster [Cu₄₃Al₁₂](Cp*)₁₂: Open-shell 67electron superatom with emerging metal-like electronic structure;
Angew. Chem. Int. Ed. 07/2018. DOI: 10.1002/anie.201806039

Wissenschaftliche Ansprechpartner:

Prof. Dr. Roland Fischer
Technical University of Munich
Chair of Inorganic and Metal-Organic Chemistry
Tel.: +49 89 289 13080 – E-mail: roland.fischer@tum.de

Originalpublikation:

https://onlinelibrary.wiley.com/doi/abs/10.1002/anig.201806039

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34960/ press release on TUM website
https://mediatum.ub.tum.de/1455514 High resolution images
http://www.amc.ch.tum.de Website of the Chair of Inorganic and Metal-Organic Chemistry

Dr. Ulrich Marsch | Technische Universität München

Further reports about: COPPER TUM aluminum atoms catalysts crystals magnetic field organic compounds test tube

More articles from Life Sciences:

nachricht First SARS-CoV-2 genomes in Austria openly available
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch
03.04.2020 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>