Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooking better biochar: Study improves recipe for soil additive

22.03.2012
Rice U. scientists: Cooking temperature determines whether ‘biochar’ is boon or bane to soil

Backyard gardeners who make their own charcoal soil additives, or biochar, should take care to heat their charcoal to at least 450 degrees Celsius to ensure that water and nutrients get to their plants, according to a new study by Rice University scientists.

The study, published this week in the Journal of Biomass and Bioenergy, is timely because biochar is attracting thousands of amateur and professional gardeners, and some companies are also scaling up industrial biochar production.

“When it’s done right, adding biochar to soil can improve hydrology and make more nutrients available to plants,” said Rice biogeochemist Caroline Masiello, the lead researcher on the new study.

Rice biogeochemist Caroline Masiello

The practice of adding biochar to topsoil to boost crop growth goes back centuries, but in recent years, international interest groups have begun touting biochar’s climate benefits as well. Biochar removes carbon from the atmosphere and locks it into the soil for hundreds and sometimes thousands of years.

With companies scaling up production and dozens of do-it-yourself videos online showing how to make biochar at home, Masiello said it is important for scientists to study examine how biochar is produced and learn which methods produce the best biochar.

In their study, Masiello’s team learned that when it comes to helping get water to plants, not all forms of biochar are the same. The researchers found charcoal produced at temperatures of 450 Celsius or higher was most likely to improve soil drainage and make more water available to plants, while charcoal produced at lower temperatures could sometimes repel water.

Rice’s award-winning biochar research group examined the hydrologic properties of biochar produced at various temperatures from three kinds of feedstock — tree leaves, corn stalks and wood chips. For all feedstocks, the researchers found that biochar produced at temperatures above 450 degrees Celsius (842 degrees Fahrenheit) had optimal properties for improving soil drainage and storing carbon.

The research team included Rice undergraduate Tim Kinney, Bellaire High School science teacher Michelle Dean and Rice faculty members, Brandon Dugan, assistant professor of Earth science, and Kyriacos Zygourakis, the A.J. Hartsook Professor in Chemical and Biomolecular Engineering. Other team members were William Hockaday, now an assistant professor of geology at Baylor University in Waco, Texas, and Rebecca T. Barnes, now a visiting assistant professor at Bard College in Annandale-on-the-Hudson, New York.

Making charcoal may sound like a strange way to boost crop production, but the concept was proven more than 2,000 years ago in South America, where native farmers added charcoal to the poor soils of the Amazon rainforest to create a rich, fertile soil known by the Portuguese name “terra preta,” or black earth. These modified soils, which are still fertile today, contain as much as 35 percent of their organic carbon in the form of charcoal. Studies over the past decade have found that the charcoal-amended soil holds more water and nutrients and also makes the water and nutrients readily available to plants.

The charcoal, or biochar, that is used to create such soil can be made from wood or agricultural byproducts. The key is to heat the material to a high temperature in an oxygen-starved environment. Native Americans did that by burying the material in pits, where it burned for days. Today, industrial-scale biochar production is beginning to occur, and dozens of do-it-yourself videos online show how to make biochar in just a few hours using steel drums.

The agricultural benefits of biochar are just one reason there’s a groundswell of interest in biochar production. Some enthusiasts are drawn by a desire to fight global warming. That’s because about half of the carbon from wood chips, corn stalks and other biomass — carbon that typically gets recycled into the atmosphere — can be locked away inside biochar for thousands of years.

“When people mow their yards here in Houston, the carbon from the grass clippings returns to the atmosphere in about six weeks,” said Masiello, assistant professor of Earth science at Rice. “We call this carbon-cycling, and it’s a universal process. Making biochar is one way to remove carbon from the atmosphere and lock it away for a long time.”

Masiello, who specializes in studying the carbon cycle, said the microscopic properties of biochar can vary widely depending upon how it’s made. In the worst case, she said, improperly made biochar can harm soil rather than improve it.

“This is the first rigorous study of the hydrologic aspects of biochar,” Masiello said. “People often tout the benefits of biochar; it can help clay-rich soils drain better, and it can help sandy soils hold water better. But we are finding that these hydrologic benefits vary widely with biochar production conditions.”

She said the study found that biochar produced at temperatures lower than 450 degrees Celsius retained some organic compounds that can actually repel water rather than attract it. In addition, the study found that lower-temperature biochar was a less stable reservoir for carbon and could return significant amounts of carbon to the atmosphere within a few hundred years.

“We plan to study ways to optimize other beneficial properties of biochar, including its ability to remove heavy metals and other pollutants from soil,” Masiello said. “Ultimately, we’d like to publish a how-to guide that would show exactly what conditions are needed to produce the optimal biochar for a given situation.”

The research was funded by the National Science Foundation and the Department of Energy.

A high-resolution image is available for download at:
http://news.rice.edu/wp-content/uploads/2012/03/0320_BIOCHAR.jpg

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Earth's magnetic field corn stalks

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>