Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conversion of breast cancer cells into fat cells impedes the formation of metastases

15.01.2019

An innovative combination therapy can force malignant breast cancer cells to turn into fat cells. This can be used to prevent the formation of metastases in mice, as researchers at the University of Basel’s Department of Biomedicine recently reported in the journal Cancer Cell.

Tumor cells can adapt dynamically to changing conditions thanks to their ability to reactivate a cellular process that is central to embryonic development. This allows the cells to alter their molecular properties and to acquire new capabilities.


Cancer cells marked in green and a fat cell marked in red on the surface of a tumor (left). After treatment (right), three former cancer cells have been converted into fat cells (dark yellow).

Image: University of Basel, Department of Biomedicine

As a result, resident cells can adopt the properties of other cell types and break away from their cell cluster. Once mobile, the cells migrate via the bloodstream to other regions of the body, where they undergo a further conversion before taking root and forming new tissue structures.

Adaptable cancer cells

In the embryo, this epithelial–mesenchymal transition (EMT) is instrumental to the development of organs. Tumor cells, however, exploit the process in order to leave the primary tumor so that they can spread around the body and form metastases in distant organs.

The research group led by Professor Gerhard Christofori at the University of Basel’s Department of Biomedicine researches the molecular processes that regulate the cellular EMT program.

Its aim is to demonstrate new approaches to combating the development of tumors and the formation of metastases – such as in the case of breast cancer, one of the most common and malignant diseases in women.

Exploiting adaptability

Malignant cancer cells exhibit a high degree of adaptability – referred to as plasticity – as they undergo the cellular EMT program. Now, the researchers have exploited this property in order to develop a new type of therapeutic approach.

In experiments on mice, they have succeeded in using a combination of two active substances to convert breast cancer cells, which divide quickly and form metastases, into fat cells that can no longer divide and can barely be differentiated from normal fat cells. This stops the tumor from invading the neighboring tissue and blood vessels, and no further metastases can form.

This novel differentiation therapy is based on a combination of two drugs: Rosiglitazone, which is widely used to treat patients with diabetes, and Trametinib, which inhibits the growth and spread of cancer cells.

“In future, this innovative therapeutic approach could be used in combination with conventional chemotherapy to suppress both primary tumor growth and the formation of deadly metastases,” says Professor Gerhard Christofori. Furthermore, the research findings show that malignant cancer cells – like stem cells – exhibit a high degree of cell plasticity, which can be exploited for therapeutic purposes.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Gerhard Christofori, University of Basel, Department of Biomedicine, Tel. +41 61 207 35 62, email: gerhard.christofori@unibas.ch

Originalpublikation:

Dana Ishay Ronen, Maren Diepenbruck, Ravi Kiran Reddy Kalathur, Nami Sugiyama, Stefanie Tiede, Robert Ivanek, Glenn Bantug, Marco Francesco Morini, Junrong Wang, Christoph Hess, and Gerhard Christofori
Gain Fat—Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis
Cancer Cell (2019), doi: 10.1016/j.ccell.2018.12.002

Weitere Informationen:

https://biomedizin.unibas.ch/en/research/research-groups/christofori-lab/ Research group of Prof. Gerhard Christofori

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht The Lypla1 Gene Impacts Obesity in a Sex-Specific Manner
18.02.2019 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>