Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Convergent Evolution in Lignin Biosynthesis: Tools for Re-Engineering Biomass Composition

07.04.2010
Lessons in lignin synthesis from the lycophyte Selaginella

Lignin is the double-edged sword of biofuels: if you are making cellulosic ethanol, you want less lignin because it blocks the breakdown of cellulose. If you are using pyrolytic methods, you want more lignin because lignin contains more energy than cellulose.

Whether you wish to maximize or minimize lignin content, an understanding of lignin synthesis is essential and has proved elusive. Lignin is a key adaptation to life on land, as it strengthens plant cell walls thereby helping land plants stand upright and reinforcing the cell walls of the specialized water-conducting tubes that are another key adaptation to growth in terrestrial environments.

The lignin polymer is made up of a complex arrangement of subunits and its subunit composition differs among different species. For example, ferns and conifers have lignin composed mainly of p-hydroxyphenyl (H) and guaiacyl (G) lignin units. Flowering plants have H and G subunits, plus syringyl (S) subunits derived from sinapyl alcohol. Interestingly, S lignin is also found in some lycophytes, including the spikemoss Selaginella (photo). In research published this week in The Plant Cell, a team of researchers led by Clint Chapple of Purdue University showed that lignin synthesis proceeds along a different path in Selaginella. Their work centers on the characterization of the enzyme ferulate 5-hydroxylase (F5H); in flowering plants, this enzyme produces S lignin units from G lignin precursors. By comparing the Selaginella enzyme (Sm F5H) to the F5H from the model flowering plant Arabidopsis thaliana (At F5H), the authors found that Sm F5H could both catalyze the same reaction as At F5H and could also catalyze an additional reaction, acting on precursors of H lignin to form precursors to G and S lignin, and thereby bypassing four steps in angiosperm lignin synthesis. Indeed, transgenic expression of Sm F5H can restore normal lignin deposition to Arabidopsis plants with mutations in other enzymes of lignin biosynthesis. Interestingly, some combinations of transgenic Sm F5H and Arabidopsis lignin mutations produce lignin compositions likely not seen in nature, indicating that manipulation of this pathway can be used to engineer lignin composition. Moreover, since different lignin subunit compositions produce different lignin structural properties, this engineering may affect biomass characteristics such as digestibility. Author Clinton Chapple notes “It is exciting to realize that the study of plants so distantly related to crops can provide us with new tools to engineer plants that are of benefit to humans.”

This research also provides interesting insights on convergent evolution, the process whereby different evolutionary lineages arrive at similar adaptations, such as the independent evolution of wings for flight in bats and birds. Selaginella is part of one of the oldest divisions of vascular plants, resulting from an ancient split between the lycophytes and euphyllophytes (which include all modern seed plants). Similar to bat wings and bird wings, the synthesis of S lignin appears to have arisen independently in flowering plants and in lycophytes. Thus, this research provides both an interesting window on convergent evolution in plants and a potentially useful tool for engineering lignin synthesis.

This research was supported by the National Science Foundation, the U.S. Department of Energy office of Science, and the Life Sciences Research Foundation.

Jennifer Mach | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>