Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling organ growth with light

19.11.2018

EMBL researchers use optogenetics to drive structure changes in tissues

In optogenetics, researchers use light to control protein activity. This technique allows them to alter the shape of embryonic tissue and to inhibit the development of abnormalities.


This is a top view of modified and natural invagination. While the left tissue is modified with optogenetics and does not invaginate, the right tissue folds towards the embryo's inside and creates a pouch.

IMAGE: Daniel Krueger/EMBL

Now, scientists in EMBL's De Renzis group have enhanced the technique to stop organ-shaping processes in fruit fly embryos. Their results, published in The EMBO Journal, allow control over a crucial step in embryonic development.

For healthy development, tissue has to change its shape. For example, groups of cells alter their shape as part of the development of organs. Stefano De Renzis and his team members at EMBL are interested in the mechanisms behind these shape transitions and use optogenetics to steer them with light.

https://youtu.be/zOqeDABZiIA

Video 1: Side view of invagination process. The outer/apical surface of the cells contracts, while the inner/basal surface relaxes. This coordinated process generates a force that drives the cell towards the inside of the embryo. This is the first step towards the development of an organ. IMAGE: Daniel Krüger / EMBL

To form internal organs like kidneys, groups of cells must move towards the inside of an embryo. During this process, called invagination, the surface of a group of cells contracts and causes the tissue to fold inwards. "Imagine the embryo as a balloon and tissue invagination as the deformation caused by fingers that push the surface of the balloon inwards. The only difference is that cells are not being subjected to an external force like the fingers, but need to be able to generate forces to move inside by themselves," says De Renzis, who led the project. Abnormalities in this process lead to problems in tissue and organ development.

Initiating and inhibiting invagination

De Renzis and his group inhibit the naturally occurring invagination process to understand its driving factors. A crucial aspect is the flexibility of the part of the tissue's surface that folds inwards. When the scientists use optogenetics to stiffen this surface, it becomes impossible for cells to bend inwards, stopping the whole invagination process. "If cells are not allowed to relax their bases, they cannot constrict their apices efficiently, and tissue invagination stops. To stick with the balloon analogy, it's like when you squeeze the top and the bottom of a balloon simultaneously. The inner pressure becomes higher and the balloon can't fold inwards anymore," says De Renzis. With their new method, it is not only possible to stop invagination before it happens, but also to stop it mid-process.

https://youtu.be/Con4D_9BLGg

Video 2: Top view of modified and natural invagination. While the left tissue is modified with optogenetics and does not invaginate, the right tissue folds towards the embryo's inside and creates a pouch. IMAGE: Daniel Krüger / EMBL

While scientists had speculated about the importance of the tissue's basal (inner) surface before, experimental techniques were not advanced enough to test this. With their new method, the EMBL team can modify protein activity without damaging the cells, while still being able to activate and deactivate the modifications as necessary. Their results provide the first proof for a long-standing theory that could explain morphological abnormalities during embryonic development.

Combined with their previous results, the scientists are now able to control every step of this important developmental process in embryos. Although the experiments were done in fruit fly embryos, De Renzis expects the results and methods to be applicable in other organisms. Optogenetics could be used to create and shape artificial tissues or to control tissue development in regenerative medicine.

Iris Kruijen | EurekAlert!
Further information:
https://news.embl.de/science/optogenetics-invagination
http://dx.doi.org/10.15252/embj.2018100170

More articles from Life Sciences:

nachricht Polymers get caught up in love-hate chemistry of oil and water
28.02.2020 | DOE/Oak Ridge National Laboratory

nachricht How do zebrafish get their stripes? New data analysis tool could provide an answer
28.02.2020 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>