Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Controlling cells with light


Photopharmacology investigates the use of light to switch the effect of drugs on and off. Now, for the first time, scientific teams from Jena, Munich, and New York have succeeded in using this method to control a component of cells that was previously considered inaccessible.

“Up to now, there are no drugs available that target actin, because the protein is found everywhere in the body, for example in large quantities in the muscles,” explains Prof. Hans-Dieter Arndt of Friedrich Schiller University Jena, Germany.

Florian Küllmer (from left), Prof. Dr. Hans-Dieter Arndt and Veselin Nasufovic in a laboratory at the University of Jena in Germany.

Photo: Jürgen Scheere/FSU

“Such a substance would therefore have little to no targeted effect. However, our new compounds only exert activity on actin in areas where cells are exposed to the appropriate light,” said Arndt, a researcher in organic chemistry.

Because actin is an essential component of the cell structure – more precisely of the cytoskeleton – individual cells can be selectively manipulated to an accuracy of as little as 10 micrometres.

This technique can also be used to control the movement of selected cells. Arndt’s international research team has reported on this in the renowned “Journal of the American Chemical Society”.

Violet light switches on, green light switches off

In its research, the group synthesized a variant of a natural substance that in its natural form stiffens the very dynamic actin cytoskeleton in the organism. In the laboratory variant, the molecule was developed further, so that its structure changes when violet light falls on it.

This increases the stabilising effect of this molecule. After a certain period of time, or when a green light is turned on, the structure reverts to its inactive basic form and the natural dynamics is restored.

After this substance, called Optojasp, is absorbed by cells in lab experiments, light can be used to control specifically the viability and mobility of individual cells – and also the communication of the cytoskeleton.

Looking ahead to potential future applications, Arndt says: “It is possible that this method could be used in the future to treat diseases of the eye or on the skin, i.e. of organs that can easily be exposed to light. This technique could also be of interest in the field of neuroregeneration. The aim here is often to encourage certain nerve cells to grow in preference to others.” Arndt also sees potential to apply his method in immune cells that are highly mobile.

“A new tool for biology”

“Above all, I consider this to be a new and exciting tool for biology,” says the Jena researcher. “These molecules should make it easier to study biological systems than with the help of light-sensitive proteins, which might be introduced by genetic engineering. With the Optojasps, the influence of actin dynamics can be studied directly – all you need to do is to add the compound, and irradiate!”

Now that the method has been shown to work, Arndt and his partners are working to optimise these molecules further and study them in greater detail.

Wissenschaftliche Ansprechpartner:

Prof. Hans-Dieter Arndt
Institute of Organic Chemistry and Macromolecular Chemistry of Friedrich Schiller University Jena
Humboldtstr. 10
07743 Jena, Germany
Phone: +49 (0)3641 9-48210
Email: hd.arndt[at]


M. Borowiak, F. Küllmer, F. Gegenfurtner, S. Peil, V. Nasufovic, S. Zahler, O. Thorn-Seshold, D. Trauner, H.-D. Arndt: Optical Manipulation of F-Actin with Photoswitchable Small Molecules, Journal of the American Chemical Society (2020). doi: 10.1021/jacs.9b12898

Weitere Informationen: - original Paper

Marco Körner | idw - Informationsdienst Wissenschaft
Further information:

More articles from Life Sciences:

nachricht CD4+ Cells in the Fast Lane - Effect of CAR-T Cells in Focus
15.05.2020 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Electrolysis: Chemists at the University of Halle have discovered how to produce better electrodes
14.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Hot and messy' entanglement of 15 trillion atoms

Quantum entanglement is a process by which microscopic objects like electrons or atoms lose their individuality to become better coordinated with each other. Entanglement is at the heart of quantum technologies that promise large advances in computing, communications and sensing, for example detecting gravitational waves.

Entangled states are famously fragile: in most cases even a tiny disturbance will undo the entanglement. For this reason, current quantum technologies take...

Im Focus: A new, highly sensitive chemical sensor uses protein nanowires

UMass Amherst team introduces high-performing 'green' electronic sensor

Writing in the journal NanoResearch, a team at the University of Massachusetts Amherst reports this week that they have developed bioelectronic ammonia gas...

Im Focus: Surgery Training with Robots and Virtual Reality

Joint press release from the University of Bremen and Chemnitz University of Technology

The insertion of hip implants places high demands on surgeons. To help young doctors practice this operation under realistic conditions, scientists from the...

Im Focus: Technology innovation for neurology: Brain signal measurement using printed tattoo electrodes

TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

In 2015 Francesco Greco, head of the Laboratory of Applied Materials for Printed and Soft electronics (LAMPSe, at the Institute of Solid...

Im Focus: Future information technologies: 3D Quantum Spin Liquid revealed

Quantum Spin Liquids are candidates for potential use in future information technologies. So far, Quantum Spin Liquids have usually only been found in one or two dimensional magnetic systems only. Now an international team led by HZB scientists has investigated crystals of PbCuTe2O6 with neutron experiments at ISIS, NIST and ILL. They found spin liquid behaviour in 3D, due to a so called hyper hyperkagome lattice. The experimental data fit extremely well to theoretical simulations also done at HZB.

IT devices today are based on electronic processes in semiconductors. The next real breakthrough could be to exploit other quantum phenomena, for example...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

Latest News

CD4+ Cells in the Fast Lane - Effect of CAR-T Cells in Focus

15.05.2020 | Life Sciences

'Hot and messy' entanglement of 15 trillion atoms

15.05.2020 | Physics and Astronomy

A soft touch for robotic hardware

15.05.2020 | Information Technology

Science & Research
Overview of more VideoLinks >>>