Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can contact with textiles spread herpes simplex?

20.03.2009
Hohenstein Institute investigates textiles as infection pathway

Herpes cold sores are as despised as they are common. The ailment is one of the most prevalent skin diseases in Germany.


According to the latest research at Hohenstein's Institute for Hygiene and Biotechnology (IHB), it seems likely that contaminated textiles may be another pathway for the spread of herpes pathogens in addition to the well-known means, including contact with saliva and by touching surfaces after scratching open herpes sores around the mouth.

With the help of molecular biological analysis, scientists at the Hohenstein Institute have successfully demonstrated that the herpes-simplex virus (HSV-1, see Figure 1) adheres strongly to textile fibres. The results clearly indicate that spread of infection may also be possible via, for example, hand towels, serviettes, and dish and cleaning cloths which a herpes sufferer previously used.

During the adhesion experiment at the IHB, a suspension of HSV-1 particles was used to contaminate small swatches of textiles directly. The results indicated that the herpes virus was still present on the textile after 48 hours at room temperature. Based on studies showing that the herpes simplex virus remains persistent on hard surfaces for eight weeks (Mahl and Sadler, 1975), one can suspect that infectious particles were also likely present on the textile.

The virus's DNA could still be found on the swatches even after laundering at 40°C in a conventional household washing machine using household detergents. This underscores the high level of adhesion of the herpes virus to textile fibres, regardless of whether these are infectious particles or not. But after laundering herpes infection via textiles remains improbable because the envelope of the virus, which plays a significant role in transmission, is very delicate. Nevertheless, based on these initial results, the danger of infection cannot conclusively be ruled out.

At the Hohenstein Institute's IHB, now established molecular biological techniques are used to detect the herpes's pathogen due to a specific enzyme reaction to its nucleic acids (DNA). Two steps are required in this process. First, heat is used break up the viral envelope to obtain access to the nucleic acids and extract DNA from the temperature-sensitive HSV-1 particles. Then, a pre-defined section of the DNA is selectively amplified using what is known as a polymerase chain reaction (PCR). The section of viral DNA can then be detected according to its pre-defined length.

The scientists at the Institute for Hygiene and Biotechnology aim to apply the molecular biological techniques that have been developed not only for research on viruses, but for consumer-orientated services in future. Official authorities in Tuebingen have issued the required permit for genetic engineering research at safety level 1.

This new research discipline at the Hohenstein Institute makes possible, for example, a comprehensive screening of the adhesion of different viruses to textiles in order to gain more precise insight into the potential for their spread via textiles, including garments and other textile products. In future, the knowledge gained through microbiological research can be used in the development of new materials that are resistant to viral adhesion which will prevent the spread viruses that have a pathogenic effect on humans or animals.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de
http://www.hohenstein.de/en/content/content1.asp?hohenstein=47-0-0-625-2009

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>