Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contact lenses with medicine and sugar

18.04.2019

Researchers at the Fraunhofer Institute for Applied Polymer Research IAP are working with Israeli and German partners to develop long-wearing contact lenses that can release medicine. The active ingredient is encapsulated in liposomes and bound to the inside of the contact lenses. This enables it to remain in the eye for longer. Sugars are added to make the contact lens particularly comfortable to wear.

When eye diseases are treated topically often only about five percent of the drug has an effect on the eye tissue. The German-Israeli research team would therefore like to use contact lenses as a transport system for active substances in order to prolong the contact time of the drug with the tissue in the eye.


In the future, contact lenses should be able to release medication over time and still be comfortable to wear.

© Fraunhofer IAP

This system could be used, for example, to relieve pain, improve wound healing and protect the cornea. However, there are a lot of requirements: the active ingredient must be released for as long as possible, the contact lens needs to have excellent lubricating properties and all components must be biologically inert.

There is currently no such application system on the market that meets all of these requirements.


Liposomes release active ingredients over time

The Israeli partner company EyeYon Medical has already developed drug-administering contact lenses that ensure longer residence times of the active substances. Nahum Ferera, CEO of EyeYon Medical, explains:

“These contact lenses release the drug for approximately 20 minutes. When eye drops are used, only 4 percent of the active ingredient generally reaches its target. We would like to extend this length of time as well as the bioavailability.

According to some studies, up to 30 percent of all contact lens wearers complain that wearing contact lenses is generally uncomfortable. With the help of the Fraunhofer IAP and the other partners, we want to improve both parameters - the release time of the drug and wearing comfort.”

The goal of the German-Israeli research team is to coat the inside of the contact lens with liposomes that carry a drug and release it over time. The liposomes are produced at the Weizmann Institute of Science by a research group led by Prof. Jacob Klein and Dr. Ronit Goldberg. However, the use of liposomes is not the only strategy for optimizing contact lenses.


Sugar to enhance efficacy and comfort

“Sugars play a key role in this project”, explains Dr. Ruben R. Rosencrantz, who heads up the project at the Fraunhofer IAP. “Sugars act as lubricants at different locations in our bodies. In the eye’s mucous layer, for example, they enable the eyelid to glide smoothly.

In order to achieve precisely this effect with contact lenses, we at the Fraunhofer IAP have developed polymers with a high sugar content, so-called glycopolymers. They coat the entire surface of the contact lens, but they can also be structural components of the liposomes carrying the drug”, explains Rosencrantz. The glycopolymer coating on the contact lens is being developed by the German company Surflay Nanotec.


On track to becoming a marketable medical device

The five partners and two subcontractors DendroPharm GmbH and Nextar Chempharma Solutions are working closely with one another in obtaining an approved medical device. The three-year project will run until July 2021. The researchers must also ensure that all of the components are biocompatible.

Biocompatibility tests are being carried out at the Rostock University Medical Center. The two subcontractors are also checking whether all system components have been manufactured in accordance with GMP (good manufacturing practice) guidelines, a kind of quality seal for the pharmaceutical and medical industries.

“Once the functionality and biocompatibility of the contact lens has been ensured, we also need to make sure that the glycopolymer can be produced in large quantities”, explains Rosencrantz who has studied both chemistry and biology.

“The mass production of glycopolymers is a very important aspect of the project at the Fraunhofer IAP because, in the end, the price must also be competitive”, Rosenkranz explains.

The project is receiving around one million euros in funding from the German Federal Ministry of Education and Research (BMBF).

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Further reports about: Angewandte Polymerforschung Contact lenses IAP Polymerforschung lens liposomes sugar

More articles from Life Sciences:

nachricht A human liver cell atlas
15.07.2019 | Max Planck Institute of Immunobiology and Epigenetics

nachricht Researchers reveal mechanisms for regulating temperature sensitivity of soil organic matter decompos
15.07.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>