Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Constructing complex molecules with atomic precision

02.06.2015

Researchers in Russia have developed a waste-free and cost-effective approach for preparing complex organic molecules and revealing the physical nature of the processes that control the direction of chemical transformations.

 Increasing demand from high technology sectors for better approaches to industrial production is prompting the emergence of a new generation of chemical synthesis methods.


Copyright : Dr. E.G.Gordeev, Ananikov Laboratory, Moscow

“Until recently, it was not possible to construct complex organic molecules by manipulating individual atoms,” says Professor Valentine Ananikov, laboratory head of the Zelinsky Institute of Organic Chemistry at the Russian Academy of Sciences.

“But the development of new lab equipment and state-of-the-art organic synthesis methods are facilitating a new direction in chemistry: the preparation of organic molecules, biologically active compounds, pharmaceutical substances and smart materials with atomic precision.”

Traditional methods for the preparation of organic molecules require complicated technologies, the use of expensive catalysts and the application of toxic reagents.

Now, scientists from 14 different laboratories representing leading research centres in Russia are combining their expertise to develop safer and more costefficient procedures for chemical production.

Their strategy includes the replacement of expensive catalysts (such as palladium, platinum and rhodium) with easier to obtain and cheaper analogues (e.g. nickel, copper and manganese). The new approach also avoids the use of toxic reagents and the production of wastes by applying alternative procedures based on sustainable protocols.

Described in Russian Chemical Reviews, the team’s approach involves preparing a target molecule by connecting molecular fragments to each other with atomic precision and carrying out all chemical modifications with complete selectivity. So far, Professor Ananikov and his colleagues have applied the new approach to synthesise some 300 individual molecules – ranging from flame retardants and ligands for catalysis to biologically active compounds and pharmaceutical building blocks.

Among its achievements, the multidisciplinary team has shed new light on the factors responsible for the formation of chemical bonds between particular atoms or molecular fragments, while completely controlling the selectivity of these reactions. What’s more, in depth studies carried out in the 14 laboratories have resulted in efficient protocols for improving the performance of chemical transformations. They have also contributed to the development of a new generation of industrial procedures.

According to the Russian team, the new approach could also be used in connection with many established procedures for preparing organic molecules such as cross-coupling reactions, fluorination reactions, catalytic hydrogenations and oxidations, among others. The researchers are now focused on implementing atomic precision chemical reactions on an industrial scale and fostering international collaborations.

For further information contact:
Professor Valentine Ananikov
Zelinsky Institute of Organic Chemistry
Russian Academy of Sciences
E-mail: val@ioc.ac.ru

*This article also appears in Asia Research News 2015 (P.58).

Associated links
Read Asia Research News 2015
Download a copy of Asia Research News 2015 for free

Ananikov Laboratory | ResearchSEA

More articles from Life Sciences:

nachricht Enzymes as double agents: new mechanism discovered in protein modification
07.07.2020 | Westfälische Wilhelms-Universität Münster

nachricht Protein linked to cancer acts as a viscous glue in cell division
07.07.2020 | Rensselaer Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Guido Bonati is the new Chief Technology Officer and Head of Research & Development at FISBA AG

08.07.2020 | Press release

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>