Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conifer Scent Influences Climate

10.01.2014
Detection by IR: The ozonolysis of terpenes forms Criegee intermediates that oxidize SO2

Conifers emit volatile hydrocarbons, primarily terpenes, which we experience as the characteristic smell of the woods.



In a complicated series of reactions involving ozone and sulfur dioxide, these compounds may be involved in the formation of aerosols that counteract the greenhouse effect. German scientists have now been able to follow the reaction of a terpene with ozone in the laboratory by using infrared (IR) spectroscopy.

As they report in the journal Angewandte Chemie, they were able to identify critical intermediates of this process, namely the Criegee intermediates. They were also able to verify that these intermediates react very efficiently with sulfur dioxide.

Terpenes have a strong influence on the chemical processes that occur in the earth’s atmosphere, even though they are only present in trace amounts. Particularly in summer, these compounds are involved in the ozone chemistry of the troposphere. It has been shown that their oxidation plays a large role in the formation of secondary organic aerosols (SOAs), which influence our climate.

These processes have not yet been completely explained and represent a large source of uncertainty in climate-prediction models. Researchers working with Thomas Zeuch at the University of Göttingen and the Karlsruhe Institute of Technology (KIT) have now gained new insights into the reactions of terpenes with ozone.

SOAs are liquid or solid particles that contain sulfuric acid (H2SO4) and are formed from gaseous precursors such as sulfur dioxide (SO2) and terpenes. Atmospheric sulfuric acid and the sulfuric acid and sulfate aerosol particles that are formed from it also contribute to acid rain. “At the same time, they work against the greenhouse effect,” explains Zeuch, “because they both promote cloud formation and reflect the sun’s radiation back into space.”

How does sulfuric acid get into the troposphere? “In addition to a sequence of reactions that starts with the oxidation of sulfur dioxide by hydroxyl radicals, an alternative pathway of oxidation by Criegee intermediates (CIs) has been proposed,” says Zeuch. These compounds are carbonyl oxides with two free-radical centers that account for their unusual chemistry. They are formed by the reaction of ozone with the double bonds in organic compounds such as terpenes. Until now, only small CIs formed through photolysis have been directly detected. In their study, Zeuch and his co-workers have now examined the reactions of the terpene called β-pinene, which is often found in plants, with ozone.

“By using IR spectroscopy, we were able to detect large, stabilized CIs formed during the ozonolysis of pinene for the first time,” reports Zeuch. “These large CIs reacted with sulfur dioxide to form sulfur trioxide with a yield of over 80 %. Time-resolved experiments revealed that this reaction is very fast.” This unequivocally proves that SO2 is efficiently oxidized to tropospheric sulfuric acid by reaction with stabilized Criegee intermediates from terpenes.

About the Author
Dr. Thomas Zeuch is group leader and lecturer at the Institute of Physical Chemistry, Göttingen University. The research in his team is dedicated to unravel the chemistry behind the formation of new particles in air. Zeuch and his co-workers try to trace this chemistry on the microscopic level by means of new infrared spectroscopic methods.

Author: Thomas Zeuch, Universität Göttingen (Germany), http://www.uni-pc.gwdg.de/zeuch/

Title: Infrared Detection of Criegee Intermediates Formed during the Ozonolysis of β-Pinene and Their Reactivity towards Sulfur Dioxide

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201307327

Thomas Zeuch | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>