Under the right conditions, peptide blocks HIV infection at multiple points along the way

Human defensins, aptly named antimicrobial peptides, are made in immune system cells and epithelial cells (such as skin cells and cells that line the gut). One of these peptides, human neutrophil peptide 1, under certain circumstances hinders HIV infection, but exactly how it works remains unclear.

HIV entry into mature T-helper cells (cells essential to the immune system) proceeds by attachment of the virus to specific targets on T-helper cells, uptake of the virus, fusion of its envelope with the cell membranes, and release of the virus into the cells. In a forthcoming Journal of Biological Chemistry Paper of the Week, Gregory Melikyan at Emory University and colleagues investigated the ability of human neutrophil peptide 1 to impede each step of this process.

Using model cell lines, Melikyan's group showed that human neutrophil peptide 1 effectively prevented HIV entry into cells in multiple ways. First, human neutrophil peptide 1 reduced the number of specific targets on the cells available for HIV attachment. Second, this defensin also bound to specific targets on both the HIV envelope and the cells, preventing early and late stages of HIV-cell fusion. Finally, human neutrophil peptide 1 prevented HIV uptake into the cells without compromising the general ability of the cells to engulf other molecules.

While human neutrophil peptide 1 hinders HIV entry into cells under these lab conditions, it does not do so as effectively in the presence of serum — meaning that it may not be as successful at blocking HIV in our bodies. But Melikyan's team showed that human neutrophil peptide 1 remained attached to its specific targets in the presence of serum, despite its reduced efficacy. Their work suggests that the structure of human neutrophil peptide 1 is important for its anti-HIV activity, and they propose that serum may interfere with the ability of this defensin to form complexes, reducing its ability to block HIV.

“Our work provides new insights into the ability of defensins to recognize and neutralize diverse pathogens, including HIV,” Melikyan says. This research reveals that human neutrophil peptide 1 can bind various viral and cellular targets and that a previously unappreciated feature is essential for its anti-HIV activity, possibly its propensity to form large complexes, Melikyan explains.

The team's findings suggest a new avenue of research for combatting HIV and viruses that infiltrate cells in a similar manner.

From the article: “Multifaceted mechanisms of HIV-1 entry inhibition by human alpha-defensin” by Lusine H. Demirkhanyan, Mariana Marin, Sergi Padilla-Parra, Changyou Zhan, Kosuke Miyauchi, Maikha Jean-Baptiste, Gennadiy Novitskiy, Wuyuan Lu, and Gregory B. Melikyan (to be published in the Aug. 17 issue of the Journal of Biological Chemistry and currently online as a Paper in Press at http://www.jbc.org/content/early/2012/06/25/jbc.M112.375949.full.pdf)

Corresponding author: Gregory B. Melikyan, Department of Pediatrics Infectious Diseases, Emory University in Atlanta, GA, USA; email: gmeliki@emory.edu

Written by Danielle Gutierrez

Media Contact

Angela Hopp EurekAlert!

More Information:

http://www.emory.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors