Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computing power solves molecular mystery

24.07.2018

A study of nearly 100,000 simulation images shows researchers what triggers water molecules to split

Chemical reactions take place around us all the time - in the air we breathe, the water we drink, and in the factories that make products we use in everyday life. And those reactions happen way faster than you can imagine.


Researchers had to study almost 100,000 simulation images of this type before they were able to identify what triggers the water molecules to split. Lots of computing power went into those simulations.

Credit: NTNU

Usage Restrictions: With credit and only in association with articles about this research

Given optimal conditions, molecules can react with each other in a quadrillionth of a second.

Industry is constantly striving to achieve faster and better chemical processes. Producing hydrogen, which requires splitting water molecules, is one example.

In order to improve the processes we need to know how different molecules react with each other and what triggers the reactions.

Challenging, even with computer simulations

Computer simulations help make it possible to study what happens during a quadrillionth of a second.

So if the sequence of a chemical reaction is known, or if the triggers that initiate the reaction occur frequently, the steps of the reaction can be studied using standard computer simulation techniques.

But this is often not the case in practice. Molecular reactions frequently behave differently. Optimal conditions are often not present - like with water molecules used in hydrogen production - and this makes reactions challenging to investigate, even with computer simulations.

Until recently, we haven't known what initiates the splitting of water molecules. What we do know is that a water molecule has a life span of ten hours before it splits. Ten hours may not sound like a long time, but compared to the molecular time scale - a quadrillionth of a second - it's really long.

This makes it super challenging to figure out the mechanism that causes water molecules to divide. It's like looking for a needle in a huge haystack.

Combining two techniques

NTNU researchers have recently found a way to identify the needle in just such a haystack. In their study, they combined two techniques that had not previously been used together.

Researchers had to study almost 100,000 simulation images of this type before they were able to identify what triggers the water molecules to split. Lots of computing power went into those simulations.

By using their special simulation method, the researchers first managed to simulate exactly how water molecules split.

"We started looking at these ten thousand simulation films and analysing them manually, trying to find the reason why water molecules split," says researcher Anders Lervik at NTNU's Department of Chemistry. He carried out his work with Professor Titus van Erp.

Huge amounts of data

"After spending a lot of time studying these simulation films, we found some interesting relationships, but we also realized that the amount of data was too massive to investigate everything manually.

The researchers used a machine learning method to discover the causes that trigger the reaction. This method has never been used for simulations of this type. Through this analysis, the researchers discovered a small number of variables that describe what initiates the reactions.

What they found provides detailed knowledge of the causative mechanism, as well as ideas for ways to improve the process.

Finding ways for industrial chemical reactions to happen faster and more efficiently has taken a significant step forward with this research. It offers great potential for improving hydrogen production.

Media Contact

Anders Lervik
anders.lervik@ntnu.no
47-735-94914

 @NTNU

http://www.ntnu.edu 

Anders Lervik | EurekAlert!
Further information:
http://dx.doi.org/10.1073/pnas.1714070115

More articles from Life Sciences:

nachricht New membrane technology to boost water purification and energy storage
04.12.2019 | Imperial College London

nachricht Dramatic transition in Streptomyces life cycle explained in new discovery
04.12.2019 | John Innes Centre

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Dramatic transition in Streptomyces life cycle explained in new discovery

04.12.2019 | Life Sciences

Early immune response may improve cancer immunotherapies

04.12.2019 | Health and Medicine

Neurodegenerative diseases may be caused by transportation failures inside neurons

04.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>