Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulations reveal roots of drug resistance

05.12.2017

Deactivating pumps could make antibiotic-resistant bacteria treatable again

New supercomputer simulations have revealed the role of transport proteins called efflux pumps in creating drug-resistance in bacteria, research that could lead to improving the drugs' effectiveness against life-threatening diseases and restoring the efficacy of defunct antibiotics.


Bacterial efflux pumps, such as the P. aeruginosa MexAB-OprM pump shown here, are one of the dominant molecular mechanisms available to Gram-negative pathogens for removing toxins, including antibiotics. Inactivation of the pump assembly and function would be a major step for reducing bacterial multidrug resistance.

Credit: LANL

"By understanding how the pump moves and dynamically behaves, we can potentially find a way to deactivate the pump--and antibiotics that haven't worked in a long time may be useful again," said Los Alamos biophysicist Gnana Gnanakaran, who collaborated with colleagues at the Laboratory and with bacterial efflux pump experts Helen Zgurskaya at the University of Oklahoma and Klaas Pos at Goethe University in Frankfurt, Germany.

Some life-threatening infections do not respond to antibiotics because efflux pumps inside a particular type of infectious microbe called Gram-negative bacteria flush out antibiotics before the drugs can work. One type of efflux pump, which until recently had only been studied in parts, was recently modeled in its entirety and simulated using supercomputers at Los Alamos National Laboratory.

The findings, published November 28 in Scientific Reports, offer a better understanding of the motions and functions of efflux pumps. The work exploits the Laboratory's extensive modeling and supercomputing simulation capabilities developed in support of its national security mission.

For this study, the researchers focused on efflux pumps inside the bacteria Pseudomonas aeruginosa, which can cause serious illnesses such as pneumonia and sepsis. In P. aeruginosa, the major pump type is called MexAB-OprM and composed of three proteins: MexA, MexB and OprM.

"This is a really, really large system--approximately a million and a half atoms," said Laboratory theoretical biologist Cesar A. López. The MexAB-OprM pump encompasses both inner and outer membranes found in Gram-negative bacteria and connects the cell's interior and periplasm (the compartment between both membranes) to the cell's exterior. That connection creates a path for drug molecules to exit the cell.

The Laboratory's supercomputers were able to perform the first atomistic simulations of the entire MexAB-OprM pump embedded within a double membrane system on a microsecond time scale.

The researchers then used the simulations to investigate the dynamics of the assembled pump and to understand how pump functionality arises from these dynamics. The amino acid interactions that stabilize the complex between MexA and OprM were also independently cross-validated using a computational technique called sequence covariation analysis by Laboratory theoretical biologist Timothy Travers. According to Travers, "This is the first time such a sequence-based technique has been applied for cross-validating the interface of a protein complex built using simulations and cryo-electron microscopy."

Application of these computational techniques to the multitude of efflux pumps found in different Gram-negative pathogens should allow scientists to elucidate if general mechanisms are shared among different pumps or are pump-specific. For example, perhaps the amino acid interactions that stabilize the pump structure could be targeted by drug development efforts to block pump assembly or function, thereby rendering currently defunct antibiotics effective once more.

###

The paper: "Dynamics of Intact MexAB-OprM Efflux Pump: Focusing on the MexA-OprM Interface," Scientific Reports, https://www.nature.com/articles/s41598-017-16497-w

The funding: LDRD-DR

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWX Technologies, Inc. and URS Corporation for the Department of Energy's National Nuclear Security Administration. Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns.

Nancy Ambrosiano | EurekAlert!

More articles from Life Sciences:

nachricht New tool improves beekeepers' overwintering odds and bottom line
19.09.2019 | US Department of Agriculture - Agricultural Research Service

nachricht Elusive compounds of greenhouse gas isolated by Warwick chemists
18.09.2019 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

UMD-led study captures six galaxies undergoing sudden, dramatic transitions

19.09.2019 | Physics and Astronomy

Study points to new drug target in fight against cancer

19.09.2019 | Health and Medicine

New tool improves beekeepers' overwintering odds and bottom line

19.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>