Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound defeats drug-resistant bacteria

29.11.2011
Chemists at Brown University have synthesized a new compound that makes drug-resistant bacteria susceptible again to antibiotics.

The compound — BU-005 — blocks pumps that a bacterium employs to expel an antibacterial agent called chloramphenicol. The team used a new and highly efficient method for the synthesis of BU-005 and other C-capped dipeptides. Results appear in Bioorganic and Medicinal Chemistry.

It’s no wonder that medicine’s effort to combat bacterial infections is often described as an arms race. When new drugs are developed to combat infections, the bacterial target invariably comes up with a deterrent.

A particularly ingenious weapon in the bacterial arsenal is the drug efflux pump. These pumps are proteins located in the membranes of bacteria that can recognize and expel drugs that have breached the membranes. In some cases, the bacterial pumps have become so advanced they can recognize and expel drugs with completely different structures and mechanisms.

“This turns out to be a real problem in clinical settings, especially when a bacterial pathogen acquires a gene encoding an efflux pump that acts on multiple antibiotics,” said Jason Sello, assistant professor of chemistry at Brown University. “In the worst case scenario, a bacterium can go from being drug-susceptible to resistant to five or six different drugs by acquiring a single gene.”

A new way to attack drug-resistant bacteria: “If drug efflux pumps are inhibited, then bacteria will be susceptible to drugs again.”That leaves two choices: Make more new and costly antibiotics or find a way around the pump. Sello and his group chose the latter. In a paper published in the journal Bioorganic and Medicinal Chemistry, the team reports it has discovered a new compound of C-capped dipeptides, called BU-005, to circumvent a family of drug-efflux pumps associated with Gram-positive bacteria, which include the dangerous MRSA and tuberculosis strains. Until that discovery, C-capped dipeptides were known to work only against an efflux pump family associated with Gram-negative bacteria.

“If drug efflux pumps are inhibited, then bacteria will be susceptible to drugs again,” Sello said. “This approach is of interest because one would have to discover efflux pump inhibitors rather than entirely new kinds of antibacterial drugs.”

Recently, a company called MPEX Pharmaceuticals discovered that specific C-capped dipeptides could block the efflux pumps of the RND family, which are responsible for much of the drug resistance in Gram-negative bacteria. One of these compounds developed at MPEX advanced to phase I of an FDA clinical trial. Sello and his co-authors investigated whether C-capped dipeptides could block the pumps of another drug efflux family, called the major facilitator superfamily (MFS), which is associated mostly with Gram-positive bacteria.

The Brown team thought that new and perhaps more potent C-capped dipeptide efflux pump blockers could be discovered. Since it is not possible to predict which C-capped dipeptides would be efflux pump blockers, they synthesized a collection of structurally diverse C-capped dipeptides and screened it for compounds with new or enhanced activities.

Normally, this is a four- to five-step process. Sello’s group reduced that to two steps, taking advantage of a technique used in other chemistry practices, known as the Ugi reaction. Using this approach, the team was able to prepare dozens of different C-capped dipeptides. They assessed each compound’s ability to block two efflux pumps in the bacterium Streptomyces coelicolor, a relative of the human pathogen Mycobacterium tuberculosis and which resists chloramphenicol, one of the oldest antibacterial drugs.

From a collection of nearly 100 C-capped dipeptides that they prepared and tested, the group discovered BU-005. The new compound excited the researchers because it prevented the MFS efflux pump family from expelling chloramphenicol. Until now, structurally related C-capped dipeptides had only been reported to prevent chloramphenicol expulsion by other drug efflux pump families.

“Our findings that C-capped dipeptides inhibit efflux pumps in both Gram-positive and Gram-negative bacteria should reinvigorate interest in these compounds," Sello said. "Moreover, our simplified synthetic route should make the medicinal chemistry on this class of compounds much simpler.”

Two Brown undergraduate students, Daniel Greenwald ’12, and Jessica Wroten ’11, helped perform the research and are contributing authors on the paper.

Greenwald joined the team in his freshman year, after reaching out to Sello. “This project was the first real immersion I had into chemistry research at an advanced level,” said Greenwald, of Madison, Wisc. “It was an amazing opportunity to be able to use the tools of synthetic chemistry to address problems from molecular biology. It was definitely one of the most engaging aspects of my experience at Brown.”

Babajide Okandeji, who earned his doctorate last May and is a new products quality control chemist at Waters Corp. in Taunton, Mass., is the paper’s first author.

Brown University funded the work. Greenwald was supported by a Royce Fellows Program. Wroten was funded by a Brown University Undergraduate Teaching and Research Assistantship (UTRA) during the summer of 2010.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht 3D technology lets us look into the distant past
20.05.2019 | Eberhard Karls Universität Tübingen

nachricht Dangerous pathogens use this sophisticated machinery to infect hosts
20.05.2019 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>