Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New composite material may restore damaged soft tissue

02.08.2011
Potential uses include facial reconstruction for soldiers' blast injuries

Biomedical engineers at Johns Hopkins have developed a new liquid material that in early experiments in rats and humans shows promise in restoring damaged soft tissue relatively safely and durably.

The material, a composite of biological and synthetic molecules, is injected under the skin, th"set" using light to form a more solid structure, like using cold to set gelatin in a mold. The researchers say the product one day could be used to reconstruct soldier's faces marred by blast injuries.

The Hopkins researchers caution that the material, described in a report in the July 27 issue of Science Translational Medicine, is "promising," but not yet ready for widespread clinical use.

"Implanted biological materials can mimic the texture of soft tissue, but are usually broken down by the body too fast, while synthetic materials tend to be more permanent but can be rejected by the immune system and typically don't meld well with surrounding natural tissue," says Jennifer Elisseeff, Ph.D., Jules Stein Professor of Ophthalmology and director of the Translational Tissue Engineering Center at the Johns Hopkins University School of Medicine. "Our composite material has the best of both worlds, with the biological component enhancing compatibility with the body and the synthetic component contributing to durability."

The researchers created their composite material from hyaluronic acid (HA), a natural component in skin of young people that confers elasticity, and polyethylene glycol (PEG), a synthetic molecule used successfully as surgical glue in operations and known not to cause severe immune reactions. The PEG can be "cross-linked"—or made to form sturdy chemical bonds between many individual molecules—using energy from light, which traps the HA molecules with it. Such cross-linking makes the implant hold its shape and not ooze away from the injection site, Elisseeff says.

To develop the best PEG-HA composite with the highest long-term stability, the researchers injected different concentrations of PEG and HA under the skin and into the back muscle of rats, shone a green LED light on them to "gel" the material, and used magnetic resonance imaging (MRI) to monitor the persistence of the implant over time. The implants were examined at 47 and 110 days with MRIs and removed. Direct measurements and MRIs of the implants showed that the ones created from HA and the highest tested concentration of PEG with HA stayed put and were the same size over time compared to injections of only HA, which shrank over time.

The researchers evaluated the safety and persistence of the PEG-HA implants with a 12-week experiment in three volunteers already undergoing abdominoplasty, or "tummy tucks." Technicians injected about five drops of PEG-HA or HA alone under the belly skin. None of the participants experienced hospitalization, disability or death directly related to the implant, which was about 8 mm long—or about as wide as a pinky fingernail. However, the participants said they sensed heat and pain during the gel setting process. Twelve-weeks after implantation, MRI revealed no loss of implant size in patients. Removal of the implants and inspection of the surrounding tissue revealed mild to moderate inflammation due to the presence of certain types of white blood cells. The researchers said the same inflammatory response was seen in rats, although the types of white blood cells responding to implant differed between the rodents and humans, a difference the researchers attribute to the back muscles— the target tissue in the rats—being different than human belly fat.

"We still have to evaluate the persistence and safety of our material in other types of human tissues, like muscle or less fatty regions under the skin of the face, so we can optimize it for specific procedures," says Elisseeff.

Elisseeff said the team has especially high hopes for the composite's use in people with facial deformities, who endure social and psychological trauma. When rebuilding soft tissue, recreating natural shape often requires multiple surgeries and can result in scarring. "Many of the skin fillers available on the market consisting of HA-like materials used for face lifts are only temporarily effective, and are limited in their ability to resculpt entire areas of the face. Our hope is to develop a more effective product for people, like our war veterans, who need extensive facial reconstruction. "

Other researchers involved in the study are Alexander Hillel, Shimon Unterman, Branden Reid, Jeannine Coburn, Joyce Axelman, Jemin Chae, Qiongyu Guo, Zhipeng Hou, Susumu Mori and Janis Taube also of Johns Hopkins University; Zayna Nahas of Stanford University; Robert Trow and Andrew Thomas of Energist North America; and Serge Lichtsteiner, Damon Sutton, Christine Matheson, Patricia Walker and Nathaniel David of Kythera Biopharmaceuticals.

The research was supported by a grant from Kythera Biopharmaceuticals, which develops cosmetic pharmaceutical products.

Related Stories:

Building Tissues from Scratch: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/news_
events/articles_and_stories/technology/2011_02_Building_Tissues_
From_Scratch.html
Jennifer Elisseeff on developing an artificial cornea: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/about_

us/scientists/jennifer_elisseeff2.html

Jennifer Elisseeff on her work engineering tissues: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/about_

us/scientists/jennifer_elisseeff.html

Coaxing Cells, "Joint Repair": http://www.hopkinsmedicine.org/stem_cell_research/coaxing_cells/joint_

repair.html

On the Web:

Jennifer Elisseeff's lab: http://web1.johnshopkins.edu/JLAB/
Department of Biomedical Engineering: http://www.bme.jhu.edu/index.php
Wilmer Eye Institute: http://www.hopkinsmedicine.org/wilmer/
Translational Tissue Engineering Center: http://web1.johnshopkins.edu/ttec/index.php

Science Translational Medicine: http://stm.sciencemag.org/

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>