Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex genetic architectures: Some common symptoms of trisomy 21

27.06.2013
Important genomic variations have been identified

Down syndrome, more commonly known as "trisomy 21" is very often accompanied by pathologies found in the general population: Alzheimer's disease, leukemia, or cardiac deficiency. In a study conducted by Professor Stylianos Antonarakis' group from the Faculty of Medicine of the University of Geneva (UNIGE), researchers have identified the genomic variations associated with trisomy 21, determining the risk of congenital heart disease in people with Down syndrome.

The targeted and specific study of chromosome 21 revealed two genomic variations, which, in combination, are the hallmark of hereditary cardiac deficiency. These results are being published in the journal Genome Research and add to other research conducted by the same team about chronic myeloid leukemia, a severe form of leukemia that often affects people with Down syndrome. The journal Blood is publishing these advances in the understanding of a disease which, like hereditary cardiac deficiencies or early Alzheimer's, affects the general population.

Heart disease is a common disorder of Down syndrome. While the presence of a third gene in the n°21 pair (which characterizes the disease) increases the risk of heart disease, it is not the sole cause: genetic variations—or polymorphisms—as well as certain environmental factors also contribute to it. Genetic variations create the diversity of human beings, their predispositions, and the differences in the expression of similar genes.

Variations increase the risk of hereditary cardiac deficiency…
As part of a study carried out on the risk of congenital heart disease in people with Down syndrome, the geneticists led by Stylianos Antonarakis who conducts the research at UNIGE's Department of Genetic and Developmental Medicine observed the dominating role of two types of polymorphisms: the nucleotide (SNP, which stands for single-nucleotide polymorphism) and the variability in the number of copies of a gene (CNV, which stands for copy number variation).

To verify these observations, the scientists created a tailor-made chromosome 21; their analyses revealed two areas of variability in the number of copies of a gene (or CNV), and one area identified by a nucleotide polymorphism (or SNP), which can be associated with the risk of heart deficiency. Therefore, this study highlights the role of two CNVs and one SNP in the cardiac pathogenesis of people with Down syndrome for the first time, revealing the genetic complexity of a common symptom of trisomy 21.

For the geneticist-authors of this study, the genetic architecture of the risk of congenital heart disease in individuals with Down syndrome must henceforth be understood as a complex combination, revealing the 21st chromosome, nucleotide polymorphism, and variability in the number of copies of a gene all at once; three factors to which we must add to the rest of the genome a still unidentified genetic variation, which Professor Antonarakis' group is already tracking.

…and also the risk of chronic myeloid leukemia
In parallel, this same group has made progress in understanding another relatively common symptom of Down syndrome, by tracking the genetic variations that identify chronic myeloid leukemia in the body's cells.

This research is itself the subject of a publication in the latest issue of the online journal Blood; like the former, it contributes to the diagnostic and therapeutic improvement of major and misunderstood disorders, pathologies that are more successfully studied in people with trisomy 21, pathologies that can affect everyone.

Stylianos Antonarakis | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>