Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communication without detours

22.09.2014

Certain nerve cells take a shortcut for the transmission of information: signals are not conducted via the cell`s center, but around it like on a bypass road. The previously unknown nerve cell shape is now presented in the journal "Neuron" by a research team from Heidelberg, Mannheim and Bonn.

Nerve cells communicate by using electrical signals. Via widely ramified cell structures—the dendrites—, they receive signals from other neurons and then transmit them over a thin cell extension—the axon—to other nerve cells. Axon and dendrites are usually interconnected by the neuron’s cell body. A team of scientists at the Bernstein Center Heidelberg-Mannheim, Heidelberg University, and the University of Bonn has now discovered neurons in which the axon arises directly from one of the dendrites. Similar to taking a bypass road, the signal transmission is thus facilitated within the cell.


A neuron in which the axon originates at a dendrite. Signals arriving at this dendrites become more efficiently forwarded than signals input elsewhere.

Copyright: Alexei V. Egorov, 2014

“Input signals at this dendrite do not need not be propagated across the cell body,” explains Christian Thome of the Bernstein Center Heidelberg-Mannheim and Heidelberg University, one of the two first authors of the study. For their analyses, the scientists specifically colored the places of origin of axons of so-called pyramidal cells in the hippocampus. This brain region is involved in memory processes. The surprising result: “We found that in more than half of the cells, the axon does not emerge from the cell body, but arises from a lower dendrite,” Thome says.

The researchers then studied the effect of signals received at this special dendrite. For this purpose, they injected a certain form of the neural transmitter substance glutamate into the brain tissue of mice that can be activated by light pulses. A high-resolution microscope allowed the neuroscientists to direct the light beam directly to a specific dendrite. By the subsequent activation of the messenger substance, they simulated an exciting input signal.

“Our measurements indicate that dendrites that are directly connected to the axon, actively propagate even small input stimuli and activate the neuron,” says second first author Tony Kelly, a member of the Sonderforschungsbereich (SFB) 1089 at the University of Bonn. A computer simulation of the scientists predicts that this effect is particularly pronounced when the information flow from other dendrites to the axon is suppressed by inhibitory input signals at the cell body.

“That way, information transmitted by this special dendrite influences the behavior of the nerve cell more than input from any other dendrite,” Kelly says. In a future step, the researchers attempt to figure out which biological function is actually strengthened through the specific dendrite—and what therefore might be the reason for the unusual shape of these neurons.

The Bernstein Center Heidelberg-Mannheim is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

The SFB 1089 ‘Synaptic Micronetworks in Health and Disease’ is a collaborative research centre in Bonn with partners in Israel. Members of the research group investigate how neurons interact within networks, and the translation of neuronal network activity to mammalian and human behavior. This SFB was inaugurated in October 2013 with the support of the German Research Foundation (DFG).

Contact:

Dr. Alexei V. Egorov
Institute of Physiology and Pathophysiology
Medical Faculty of Heidelberg University
Im Neuenheimer Feld 326
69120 Heidelberg
Tel: +49 (0) 6221 544053
Email: alexei.egorov@urz.uni-heidelberg.de

Prof. Dr. med. Andreas Draguhn
Institute of Physiology and Pathophysiology
Medical Faculty of Heidelberg University
Im Neuenheimer Feld 326
69120 Heidelberg
Tel: +49 (0) 6221 544056
Email: andreas.draguhn@physiologie.uni-heidelberg.de

Dr. Tony Kelly
Laboratory of Experimental Epileptology and Cognition Research
University of Bonn Medical Center
Sigmund-Freud Str. 25
53127 Bonn
Tel: +49 (0) 228 6885 276
Email: tony.kelly@ukb.uni-bonn.de

Prof. Dr. med. Heinz Beck
Laboratory of Experimental Epileptology and Cognition Research
University of Bonn Medical Center
Sigmund-Freud Str. 25
53127 Bonn
Tel: +49 (0) 228 6885 270
Email: heinz.beck@ukb.uni-bonn.de

Original publication:

C. Thome, T. Kelly, A. Yanez, C. Schultz, M. Engelhardt, S. B. Camebridge, M. Both, A. Draguhn, H. Beck and A. V. Egorov (2014): Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons. Neuron, 83, 1418-1430.
doi: 10.1016/j.neuron.2014.08.013

siehe auch Kommentar: P. Kaifosh and A. Losonczy (2014). Neuron, 83, 1231-1233.

Weitere Informationen:

http://www.medizinische-fakultaet-hd.uni-heidelberg.de/Draguhn-Andreas-Prof-Dr.1... webpage Andreas Draguhn
http://www.uni-heidelberg.de University Heidelberg
http://www.meb.uni-bonn.de/agBeck Laboratory for Experimental Epileptology, University of Bonn
http://sfb1089.de Sonderforschungsbereich 1089 at University of Bonn
http://www.bccn-heidelberg-mannheim.de Bernstein Center Heidelberg-Mannheim
http://www.nncn.de/en National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>