Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining Strategies Speeds the Work of Enzymes

08.05.2013
NREL research finds synergy in two approaches to breaking down cell walls of biomass
Enzymes could break down cell walls faster – leading to less expensive biofuels for transportation – if two enzyme systems are brought together in an industrial setting, new research by the Energy Department’s National Renewable Energy Laboratory suggests.

A paper on the breakthrough, “Fungal Cellulases and Complexed Cellulosomal Enzymes Exhibit Synergistic Mechanisms in Cellulose Deconstruction,” appears in the current edition of Energy and Environmental Science. Co-authors include five scientists from NREL and one from the Weizmann Institute in Israel.

The Energy Independence and Security Act of 2007 has set a goal of producing 36 billion gallons of biofuel a year in the United States by 2022, including 21 billion gallons coming from advanced biofuel production. One barrier to reaching that goal is the high cost of enzyme treatment, a crucial step in turning the biomass – poplar trees, switchgrass, corn stover, and the like – into liquid fuel.

Enzymes secreted by microorganisms naturally degrade the cell walls of plants, breaking them down so their sugars can be harvested. But plants have their own survival tricks, including mechanisms to make it harder for the enzymes to break down the cell walls. Those defenses boost the cost of producing biofuels, and have pushed researchers to try to find combinations of enzymes that can do the job faster.

NREL researchers found that two enzyme paradigms – free and complexed enzymes – use dramatically different mechanisms to degrade biomass at the nanometer scale. Further, they found that mixing the two systems enhances catalytic performance. The findings suggest that there may be an optimal strategy between the two mechanisms – one that Nature may already have worked out.

When the two enzyme systems are combined, the substrate changes in unexpected ways and that result suggests the two systems work with each other to deconstruct the cell walls more efficiently. Scientists can use this knowledge to engineer optimal enzyme formulations – fast, efficient, single-minded and hungry.

To outmaneuver the plant’s survival mechanisms, many microorganisms secrete synergistic cocktails of individual enzymes, with one or several catalytic domains per enzyme. Conversely, some bacteria synthesize large multi-enzyme complexes, called cellulosomes, which contain multiple catalytic units per complex.

While both systems use similar catalytic chemistries, the ways they degrade polysaccharides has been unclear.

NREL researchers found that the free enzymes are more active on pretreated biomass, while the cellulosomes are more active on purified cellulose. Using electron microscopes they found that free enzymes attack the plant cell wall surface by chipping and eroding, helped along by sharpening the thread-like cellulose fibers.

By contrast, the cellulosomes physically separate individual cellulose microfibrils from larger particles to enhance access to the cellulose surfaces. They assemble protein scaffolding to help get the job done.

NREL researchers observed that when the two enzyme systems are combined, the work improves dramatically, likely due to our combining enzymes that evolved naturally, and independently, to do the same job in different ways.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

Further reports about: NREL cell walls electron microscope enzymes poplar tree strategies

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>