Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colour vision in primates closely linked to palm fruit colours

26.02.2020

The evolution of colour vision might be closely linked to the availability of food. Researchers from the German Centre for Integrative Biodiversity Research (iDiv), Leipzig University (UL), and the University of Amsterdam (UvA) found that colour vision in African primate species, which is similar to that of humans, is related to the spatial distribution of palm fruit colours. The results of their study have been published in Proceedings of the Royal Society B. They shed new light on the evolution of primates.

In our retina, three kinds of receptors are responsible for the perception of basic colours: red, green and blue. The same holds true for many primate species – in contrast to all other mammals. For nocturnal species, the ability to distinguish different colours would not provide a significant advantage.


Primates rely on palm fruits as their primary food source, But they are also important seed dispersers in tropical forests, particularly for large fruits.

M. McLennan, Bulindi Chimpanzee & Community Project

It is therefore highly probable that so-called trichromatic vision developed in diurnal primates. In addition to greens and blues, they can also distinguish shades of red, making it easier to detect coloured fruit.

This could provide a competitive advantage over other fruit-eating animals that cannot distinguish red from green. While this idea had been tested experimentally in a few species, it remained largely unexplored on a larger scale.

A team of researchers from iDiv, UL and UvA has now shown that trichromatic vision in primates is strongly linked to the availability of conspicuous, red palm fruits. Their research involved analysing data on the colour vision and distribution of more than 400 primate species as well as fruit colour data for over 1700 palm species.

The result was clear: trichromatic vision in primates is most common in African countries with a high proportion of palm species with very colourful, conspicuous fruits.

This relationship is a win-win situation, benefiting both primates and palms: while primates rely on palm fruits as their primary food source, they are also important seed dispersers in tropical forests, particularly for large fruits. The research shows that the number of diurnal, fruit-eating primates in Africa increases with the proportion of conspicuous palm fruits, with a peak in subtropical regions.

The results suggest that the effects of palm fruits on primates are strongest in the transition zones of arid to subtropical regions, where competition for food is also high. For the African primates, the ability to see several colours is thus an advantage when foraging. Palms, in turn, evolved colourful fruits that could be easily spotted by the primates, thus helping to disperse their seed.

The researchers did not only analyse data from the African continent, but also from Asia and the Americas. “Interestingly, in the Americas and Asia some primate species have trichromatic vision, whereas others do not. Here, we did not identify a relationship between colour vision and the proportion of conspicuous palm fruits,” said first author Dr Renske Onstein from iDiv and UL.

Furthermore, most primates in the Americas prefer palm fruits with non-conspicuous colours. By contrast, many trichromatic primates in Asia have no interest whatsoever in a fruit’s colour – they enjoy feeding on large amounts of fruit in general.

“In Asia and the Americas, birds and bats could play a more important role as seed dispersers than primates,” explained Dr Daniel Kissling from UvA, senior author of the study. “In contrast, there are relatively few frugivorous birds on the African continent, so palm species may rely more on primates as seed dispersers than other fruit-eating animals.”

The analyses show that palm species in Africa are dominated by those with conspicuous fruits, whereas the fruits of American species tend to be more inconspicuous.

Many primate species are now threatened with extinction due to rapid habitat loss and global changes. This may have cascading effects, especially when some plant species rely on primates as their primary seed dispersers.

Thus, conservation efforts should also take plant-animal interactions and fruit-colour diversity into account as this is crucial for maintaining tropical biodiversity.

Wissenschaftliche Ansprechpartner:

Dr Renske Onstein
renske.onstein@idiv.de

Originalpublikation:

Onstein RE, Vink DN, Veen J, Barratt CD, Flantua SGA, Wich SA, Kissling WD (2020). Palm fruit colours are linked to the broad-scale distribution and diversification of primate colour vision systems. Proc. R. Soc. B 20192731. DOI: 10.1098/rspb.2019.2731

Weitere Informationen:

http://rspb.royalsocietypublishing.org/lookup/doi/10.1098/rspb.2019.2731

Volker Hahn | idw - Informationsdienst Wissenschaft
Further information:
http://www.idiv.de/

Further reports about: Retina coloured fruit primate subtropical regions trichromatic vision

More articles from Life Sciences:

nachricht TU Bergakademie Freiberg researches virus inhibitors from the sea
27.03.2020 | Technische Universität Bergakademie Freiberg

nachricht The Venus flytrap effect: new study shows progress in immune proteins research
27.03.2020 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>