Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Collaborative Research Centre in Molecular Biology

01.06.2012
DFG provides over ten million Euros to fund CRC “Cellular Quality Control and Damage Response”

How do cells respond to damage and how are disturbances in cellular equilibrium avoided or compensated? These issues are at the heart of a new Collaborative Research Centre funded by the German Research Foundation (DFG) and ready to be launched at Heidelberg University on 1 July 2012.

The CRC 1036 “Cellular Quality Control and Damage Response” is coordinated by Prof. Dr. Bernd Bukau, director of the Center for Molecular Biology of Heidelberg University (ZMBH). In the course of the next four years, this new research venture will receive funding to the tune of over ten million Euros.

The 17 research projects constituting CRC 1036 focus on the molecular mechanisms of cellular quality control. Despite their complexity, biological processes normally function with incredible precision, says Prof. Bukau. Nevertheless, the underlying processes are subject to occasional errors aggravated by external chemical or physical stress factors. In response to these mishaps, the cells of all organisms have developed efficient networks of surveillance systems operating at the levels of macromolecules, cellular compartments, cells and organs. “These networks minimise and reverse damage caused by process deficiencies and defective molecules”, Prof. Bukau adds.

At the levels of the genome, the transcriptome and the proteome, the Heidelberg research groups involved in CRC 1036 intend to investigate how biological surveillance systems avoid errors and damage and how repair systems detect and handle defects. “A comprehensive understanding of these systems will also give us new insights into the genesis of diseases and the course of the cellular aging process”, Prof. Bukau emphasises. The new Collaborative Research Centre assembles Heidelberg University scientists working in biosciences and medicine, as well as researchers from the German Cancer Research Center (DKFZ) and the European Molecular Biology Laboratory (EMBL) in Heidelberg. Prof. Bukau heads a cross-departmental group at the DKFZ and is co-director of the DKFZ-ZMBH Alliance.

At present, Heidelberg University receives funding for eight Collaborative Research Centres. In addition, there are five CRC/Transregio with key Heidelberg participation, four of them with coordinators from the university. Alongside CRC 1036, the German Research Foundation has also approved the establishment of CRC/TRR 125 “Cognition-Guided Surgery” starting up on 1 July 2012. Coordinator is the Heidelberg medical scientist Prof. Dr. Markus W. Büchler.

Contact
Prof. Dr. Bernd Bukau
Center for Molecular Biology of Heidelberg University (ZMBH)
Phone: +49 6221 54-6850
direktor@zmbh.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.dfg.de
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>