Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CMU neuroscientists identify how the brain works to select what we (want to) see

22.02.2012
Use of diffusion spectrum imaging, pioneered in Pittsburgh, enabled major discovery

If you are looking for a particular object — say a yellow pencil — on a cluttered desk, how does your brain work to visually locate it?


The three colors demonstrate one-to-one mapping from the first place visual information comes from the eyes and its path to the parietal cortex. Credit: Carnegie Mellon University

For the first time, a team led by Carnegie Mellon University neuroscientists has identified how different neural regions communicate to determine what to visually pay attention to and what to ignore. This finding is a major discovery for visual cognition and will guide future research into visual and attention deficit disorders.

The study, published in the Journal of Neuroscience, used various brain imaging techniques to show exactly how the visual cortex and parietal cortex send direct information to each other through white matter connections in order to specifically pick out the information that you want to see.

"We have demonstrated that attention is a process in which there is one-to-one mapping between the first place visual information comes from the eyes into the brain and beyond to other parts of the brain," said Adam S. Greenberg, postdoctoral fellow in the Dietrich College of Humanities and Social Sciences' Department of Psychology and lead author of the study.

"With so much information in the visual world, it's dramatic to think that you have an entire system behind knowing what to pay attention to," said Marlene Behrmann, professor of psychology at CMU and a renowned expert in using brain imaging to study the visual perception system. "The mechanisms show that you can actually drive the visual system — you are guiding your own sensory system in an intelligent and smart fashion that helps facilitate your actions in the world."

For the study, the research team conducted two sets of experiments with five adults. They first used several different functional brain scans to identify regions in the brain responsible for visual processing and attention. One task had the participants look at a dot in the center of the screen while six stimuli danced around the dot. The second task asked the participants to respond to the stimuli one at a time. These scans determined the regions in both the visual and parietal cortices. The researchers could then look for connectivity between these regions.

The second part of the experiment collected anatomical data of the brain's white matter connectivity while the participants had their brains scanned without performing any tasks. Then, the researchers combined the results with those from the functional experiments to show how white matter fibers tracked from the regions determined previously, the visual cortex and the parietal cortex. The results demonstrated that the white matter connections are mapped systematically, meaning that direct connections exist between corresponding visual field locations in visual cortex and parietal cortex.

The researchers used a technique called "diffusion spectrum imaging," a new procedure pioneered at Carnegie Mellon and the University of Pittsburgh to generate the fiber tracts of the white matter connectivity. This method was combined with high-resolution tractography and provides scientists with better estimates of the hard-wired connections between brain regions and increased accuracy over conventional tractography methods, such as those typically used with diffusion tensor imaging.

"The work done in collaboration with the University of Pittsburgh researchers exploits a very new, precise and cutting edge methodology," Behrmann said.

"Because we know that training can alter white matter, it might be possible, through training, that the ability to filter out irrelevant or unwanted information could be improved," Greenberg said.

Additional researchers on this study included Timothy Verstynen, a research associate in the University of Pittsburgh's Learning Research and Development Center, Yu-Chin Chiu, a post-doc in University of California, San Diego's Department of Psychology, Steven Yantis, professor of psychological and brain sciences at the Johns Hopkins University and Walter Schneider, professor of psychology at the University of Pittsburgh. Greenberg, Behrmann, Verstynen and Schneider are also members of the Center for the Neural Basis of Cognition (CNBC), a joint project between Carnegie Mellon and the University of Pittsburgh devoted to investigating neural mechanisms and their impact on human cognitive abilities.

The National Institutes of Health funded this research.

Shilo Rea | EurekAlert!
Further information:
http://www.cmu.edu

Further reports about: CMU Psychology neural mechanism visual cortex

More articles from Life Sciences:

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

ETRI exchanged quantum information on daylight in a free-space quantum key distribution

10.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>