Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Close to human: Scientists decipher the origin of tarsiers

30.04.2013
Scientists of Münster Univerity have finally resolved the controversial question of the phylogenetic decent and evolutionary history of Ghost Monkeys / Results published online in "Nature Scientific Reports"

Tarsiers are indigenous to the islands of Southeast Asia, but visitors to the zoo should also be familiar with these charming monkeys with their conspicuously big eyes. A meeting with them in the monkey house is practically a visit with our own relatives, a new study now shows.

For decades, we remained in the dark regarding the evolutionary origin of the tarsiers, but now a new scientific study has brought light into this dark corner of our knowledge; the tarsiers, or Ghost Monkeys, are indisputably much more closely related to humans and other higher primates than previously imagined. The research group of Dr. Jürgen Schmitz in the Institute of Experimental Pathology at the University of Münster in Germany, funded by the German Science Foundation (DFG), has finally resolved the controversial question of the phylogenetic decent and evolutionary history of this branch of higher primates. The results of their scientific analyses have just been published online in the journal "Nature Scientific Reports".

The tarsiers were long thought to represent the very first branching on the evolutionary tree of primates, and thus more distantly related to humans and other higher primates. But this view was already shaken in 2001, when Dr. Jürgen Schmitz and his colleagues identified 50-million-year-old so called ‘Jumping genes’ in the current genomes of tarsiers. “These jumping genes are contemporary, quasi fossilized genomic witnesses of tarsiers much closer relationship to humans than to other prosimians,” explained Schmitz. Unfortunately, over the next twelve years, others’ analyses of tarsier DNA sequences could not definitively confirm their placement on this branch of the evolutionary tree of primates – until now.

In a much more extensive analysis of ancient jumping genes in primates, Schmitz and his research group in Münster, along with others from the Genome Institute of Washington, have finally found clear evidence that the tarsiers are indeed much more closely related to humans than previously thought. Dr. Gennady Churakov and Gerrit Hartig, the two bioinformatics scientists who screened and analyzed the genomes of Tarsius and other related primate species, provided the major contribution to this evidence. In describing their bioinformatics approach, Dr. Churakov explained, “For the first time, we were able to examine the entire genome of the tarsiers and compare it with those of many representatives of other higher primates and prosimians.” Using complex computer algorithms, the team was able to identify 104 50-million-year-old, jumping genes in Tarsius that are identical with ones in human, unequivocally indicating that they both inherited them from a common ancestor. Thus, one of the most controversial, unresolved questions of primate evolution is now answered. “For gene and genome comparisons, Tarsius is decidedly the closest reference to higher primates,” exclaimed Prof. Jürgen Brosius, head of the Institute of Experimental Pathology, obviously excited with the new results from his institute.

Contact:

Dr. Thomas Bauer
Dekanat der Medizinischen Fakultät
der Westfälischen Wilhelms-Universität Münster
Ressort Presse & Public Relations
Phone: +49 (0) 251 - 83 58 93 7
E-Mail: thbauer@uni-muenster.de

Publication:

Hartig, G., Churakov, G., Warren, W. C., Brosius, J., Makalowski, W., Schmitz, J. (2013) Retrophylogenomics place tarsiers on the evolutionary branch of anthropoids.

http://dx.doi.org/10.1038/srep01756

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>