Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clockwork in the eye of a fly

03.04.2013
The blue-light pigment cryptochrome is important in regulating the circadian clock of many organisms. Scientists have now discovered that in the fruit fly Drosophila it also intervenes in the visual process. The central experiments involved were conducted at the University of Würzburg’s Biocenter.
Timing is everything in the life of all organisms: plants sprout when spring is coming, bees know what flowers are open at what time of year, people tire in the evening and wake up again in the morning, and even single-celled organisms possess a circadian clock. The fruit fly Drosophila melanogaster also has a series of so-called clock genes that dictate its behavior.

With regard to the timing mechanism of the fruit fly, scientists from the universities of Padua, Ferrara, and Würzburg have now discovered a surprising detail: “We have been able to show that the blue-light pigment cryptochrome in the eye of the fly interacts with an important component of the phototransduction cascade, the protein complex InaD,” says Professor Charlotte Förster. The researchers present their work in the current issue of the scientific journal PNAS.

Charlotte Förster has been a professor at the University of Würzburg since September 2009 and chairs its Department of Neurobiology and Genetics. Chronobiology, the temporal order of all living organisms, is this biologist’s specialty. She is also a spokesperson for the Collaborative Research Center “Insect timing: mechanisms, plasticity and interactions”, which began its work at the start of this year. It too addresses the question of how circadian clocks work in the animal kingdom.

Intervention in the visual process

The fact that cryptochrome intervenes in the visual process, is news to the science world. “Until now, cryptochrome was regarded as an important photoreceptor in the circadian clock of the fly,” says Förster. In special nerve cells known as clock neurons, cryptochrome interacts with the clock protein Timeless upon exposure to light and ensures that this protein is degraded. It was not previously known that cryptochrome had any effect on the visual process and therefore on the membranes of photoreceptor cells.

These molecular processes were uncovered by scientists from Italy involved in the publication. Charlotte Förster’s team was responsible for the corresponding behavioral experiments that made it possible to prove on a living object that cryptochrome does indeed influence the visual process.

The experiments

“The light sensitivity of the eyes is modulated in all animals by the circadian clock,” explains Charlotte Förster. Eyes are generally more sensitive at night than during the day. In flies, the easiest way to test light sensitivity is with behavioral experiments. For this purpose, the scientists measured the tendency of the insects to approach a light source or to follow a stripe pattern rotating around them. “Both responses are stronger at night, when the photoreceptor cells of the eye are more sensitive, than during the day,” says the biologist. In fact, Förster’s colleague, Matthias Schlichting, revealed in his experiments that flies lacking the gene for cryptochrome do not exhibit this rhythm. Their response permanently remains at the minimum level that is measurable during daytime.

Measurement on the retina

Since these measurable behavioral responses are “at the end of the whole visual process”, so to speak, and can be altered by numerous external and internal influences, the scientists also measured the light sensitivity of the eye using direct means. This was the responsibility of Rudi Grebler, another member of Förster’s department. Grebler measured, among other things, the response of the cells in the retina of flies when presented with a flash of light. This revealed that in this case, too, the light sensitivity of the eye of flies lacking the gene for cryptochrome was altered in the same way as in the behavioral experiments: there was no circadian modulation, and the photoreceptor cells of the eye no longer demonstrated maximal sensitivity.

The scientists therefore drew the following conclusion: “Cryptochrome seems to be an important mediator between the circadian clock and the light sensitivity of the eye. This appears to happen through interaction
with the protein InaD.”

“Fly cryptochrome and the visual system”. Gabriella Mazzotta, Alessandro Rossi, Emanuela Leonardi, Moyra Mason, Cristiano Bertolucci, Laura Caccin, Barbara Spolaore, Alberto J. M. Martin, Matthias Schlichting, Rudi Grebler, Charlotte Helfrich-Förster, Stefano Mammi, Rodolfo Costa and Silvio C. E. Tosatto. PNAS Online Early Edition, March 25, 2013. www.pnas.org/cgi/doi/10.1073/pnas.1212317110

Contact
Prof. Dr. Charlotte Förster, +49 (0)931 31-88823, charlotte.foerster@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>