Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change 'disrupts' local plant diversity, study reveals

16.08.2019

Faster rates of climate change could be increasing the diversity of plant species in many places, according to research from the University of York.

Researchers have discovered that the numbers of plant species recorded by botanists have increased in locations where the climate has changed most rapidly, and especially in relatively cold parts of the world.


Bee Orchid plant

Credit: Prof Chris Thomas, University of York

Human activity has been responsible for substantial declines in biodiversity at the global level, to such an extent that there are calls to describe the modern epoch as 'The Anthropocene'.

But although the total number of plant species on the planet may be in decline, the average number of plant species found locally - the so-called local or alpha diversity of a site - seems to be stable, or even increasing in places.

Scientists at the University of York think that the 'disruption' of these local plant communities by rapid climate change, especially changes in rainfall, may be allowing new species in and fuelling these local diversity increases.

Lead author, Dr Andrew Suggitt from the University of York's Department of Biology, said: "We used a large dataset of over 200 studies in which botanists had counted the number of plant species present in survey plots situated all around the world.

"We tested for the influence of climate change alongside other well-known drivers of diversity change, finding that the local differences in climate, and exposure to climate change, were responsible for a substantial part of the change in plant species numbers found in these surveys".

"Our models suggest that typical rates of climate change in cooler regions of the world are driving an increase in local species richness of 5% per decade.

This is really quite a large number if it continues for 13 decades or more, given that humans have already been changing the climate for over half a century, and climate change is set to continue until the year 2100, at least. What we are observing has substantial implications for future ecosystems".

Co-author Professor Chris Thomas added: "This does not mean that the botanical world gets a clean bill of health. We are living in 'The Anthropocene' epoch, and some plant species have become globally extinct. Many, many more are endangered.

"However, there is a disconnect between what is happening at that global level and the average change to plant diversity that can be observed in, say, a one metre square plot of ground.

"The effect of climate change may not be as dramatic as a meadow being turned into a car park, or a forest being cut down, but it's a pervasive effect that is already evident over vast areas of the Earth's land surface.

"For example, warmth-loving bee orchids (Ophrys apifera) have started arriving at a much wider variety of sites across the north of England, taking advantage of the changing climate.

"The data we have analysed tells us that colonists are tending to arrive faster than incumbents disappear, giving rise to slight increases in plant diversity in places where the climate is changing the most".

Dr Suggitt added: "The recent global assessment report by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services* highlighted worrying declines in plants and animals around the world.

"But it also highlighted the sore need for greater clarity over how climate change is shuffling the deck of plant species found in particular locations - especially in under-sampled areas such as the tropics, Africa and Asia.

"We hope our study opens the door to a fuller understanding of how climate change is affecting plant communities, and what this means for the conservation of nature and its contribution to people".

Media Contact

Alistair Keely
pressoffice@york.ac.uk
44-019-043-23918

 @uniofyork

http://www.york.ac.uk 

Alistair Keely | EurekAlert!

More articles from Life Sciences:

nachricht New technique to determine protein structures may solve biomedical puzzles
11.12.2019 | Dana-Farber Cancer Institute

nachricht NTU Singapore scientists convert plastics into useful chemicals using su
11.12.2019 | Nanyang Technological University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>