Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Climate Change affects Microbial Life below the Seafloor

22.10.2013
Traces of past microbial life in sediments off the coast of Peru document how the microbial ecosystem under the seafloor has responded to climate change over hundreds of thousands of years.

For more a decade scientists at the Max Planck Institute for Marine Microbiology and their colleagues at MARUM and the University of Aarhus have investigated microbial life from this habitat.


The samples were taken during the Ocean Drilling Program (ODP) in 2002. (www-odp.tamu.edu).
NASA


The international drilling vessel JOIDES Resolution
iodp.org

This “Deep Biosphere”, reaching several hundred meters below the seafloor, is exclusively inhabited by microbes and is generally considered as stable. Nevertheless, only little is known about how this system developed over millennia and how this microbial life influences the cycling of carbon in the oceans.

In a new study appearing in the Proceedings of the National Academy of Sciences (PNAS) Dr. Sergio Contreras, a palaeoceanographer, and his Bremen colleagues use a careful examination of drill-cores from the continental shelf of Peru to actually show how surprisingly dynamic this deeply buried ecosystem can be.

Below the sea floor, consortia of two different domains of microorganisms (archaea and bacteria) tap the energy of methane, which they oxidize by using sulfate. This process is known as the anaerobic oxidation of methane (AOM) and has been intensively studied by Bremen researchers. Methane, also produced by archaea, emerges from deeper layers of the sediment, while sulfate diffuses slowly from the water column into the sediment.

Both reactants meet at the so-called methane oxidation front. Only at this front are concentrations of sulfate and methane high enough for the microbial turnover to take place, and here the AOM process leaves behind mineral and biological fossil signatures. For example, archaeol, a constituent of the archaeal cell membrane, is an extremely stable molecule that is preserved over thousands to millions of years. Minerals such as barite (barium sulfate) and dolomite (magnesium calcium carbonate) also precipitate at this methane oxidation front due to microbial activity.

Migration of the methane oxidation front
In order to trace the migration of the methane oxidation front back over the last half million years, Dr. Contreras and his colleagues measured the barite, dolomite and archaeol content at high resolution in drill cores from the coast off Peru. These up to 200-meter-long cores from the Peruvian continental shelf were obtained during an expedition with the scientific drill ship JOIDES Resolution as part of the Ocean Drilling Program in 2002. To their surprise, Contreras and his colleagues detected a layer that was strongly enriched in archaeol, barite and dolomite, located 20 meter above the present-day methane oxidation front. They estimated that this layer was formed during the last interglacial time period about 125000 years ago and that the methane front must have rapidly migrated downwards during the last glacial period. „Our data demonstrate how fast the microbial communities respond to changes in the oceanographic conditions, at least on a geological time scale“, explains the biogeochemist Dr. Tim Ferdelman.
Exploring the past with mathematical modeling
To reconstruct the rapid shifts in the depth of the methane front, Contreras and his colleagues used a mathematical model for simulating the deep microbial activity and its dependence on climate change. The simulations clearly show that the amount of organic detritus raining out from the highly productive Peruvian surface waters is the crucial factor determining the relative position of the methane front. The amount of carbon deposited on the Peruvian shelf strongly depends on the global climate; thus the methane oxidation front moved upwards during warm periods due to intensified organic carbon deposition, and migrated downwards with the onset of cold, glacial periods due to low organic carbon deposition. ”We can incorporate these new findings into models for the development of past or future Deep Biospheres“, concludes Dr. Bo Liu who developed the model for this study.

The geologist Dr. Patrick Meister highlights the implications of this finding: „The detected traces provide the key to the history of the sub-seafloor microbial activity and its dynamic interaction with climate and oceanography for of the past 100,000 years. If we look further back in time, such as over the past million years” speculates Meister, “we might find even more drastic changes of microbial activity in the deep biosphere“. Such ongoing research efforts between geologists and microbiologists, along with access to deep sediment samples within the framework of the Integrated Ocean Drilling Program (IODP), should continue to provide insight into the interactions between climate and the deep biosphere.

Further Informationen

Dr. Patrick Meister, +49 421 2028832, pmeister@mpi-bremen.de
Dr. Timothy Ferdelman, +49 421 2028632, tferdelm@mpi-bremen.de
Press officer
Dr. Manfred Schloesser, +49 421 2028704, mschloes@mpi-bremen.de
Original publication
Cyclic 100 ka (glacial-interglacial) migration of sub-seafloor redox zonation on the Peruvian shelf. Sergio Contreras, Patrick Meister, Bo Liu, Xavier Prieto-Mollar, Kai-Uwe Hinrichs, Arzhang Khalili, Timothy G. Ferdelman, Marcel M. M. Kuypers, and Bo Barker Jørgensen. Proceedings of the National Academy of Sciences, 2013.

doi/10.1073/pnas.1305981110

Institutes and Universities
Max Planck Institute for Marine Microbiology, Department of Biogeochemistry, Celsiusstrasse 1, D-28359 Bremen, Germany

Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, D-28359 Bremen, Germany

Department of Bioscience, Center for Geomicrobiology, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark.

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>