Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change affects geographical range of plants

16.08.2010
Researches at the University of Gothenburg have shown how climate change many million years ago has influenced the geographical range of plants by modelling climate preferences for extinct species. The method can also be used to predict what effects climate change of today and tomorrow will have on future distributions of plants and animals.

The researcher Mats Töpel at the Department of Plant and Environmental Sciences, University of Gothenburg, has studied how climate change has influenced the development of a group of plants in the genus Potentilla, commonly known as cinquefoils.

His research shows that this group of plants developed during a period of climate change in western North America around 25 million years ago, which led to summer drought in California and the largest desert in North America, the Great Basin.

The small plant Ivesia bailey is adapted to living in extremely dry conditions, by seeking shade on north-facing rocks in the Nevada Desert. This lifestyle is believed to have evolved in the genus Potentilla around 20 million years ago.

Models of the climate

“By creating models of the climate in which the group probably evolved, I have shown that there was a suitable climate in the eastern part of the Great Basin approximately 25 million years ago, and that the geographical range of these plants expanded to the west at the same time as new species evolved and adapted to different types of environments.

The method of building climate models for organisms that no longer exist is quite new, and only a few studies of this type have previously been published.

Models can be used to predict the future

“I have used the method to study how climate change many millions of years ago has shaped the vegetation we see today, but it can also be used to predict how present and future climate change may affect organisms and hence, our living conditions. If these changes lead to a situation in which the crops we depend on find it difficult to cope, large resources will be required to maintain or reorganise our agricultural production.

Future climate change may also lead to alien species changing their geographical ranges and starting to interact with native species, in the same way as both marine and terrestrial species have done in recent years. This can eventually lead to native species being outrivaled by the alien species.

“Based on my results and this method we have an opportunity to understand processes that where active in the past and that have shaped the environment we live in today. This gives us an opportunity to interpret our contemporary world so that we can influence what our future will look like.”

The thesis Phylogenetic and Phyloclimatic Inference of the Evolution of Potentilleae (Rosaceae) was successfully defended on 11 June.

Contact:
Mats Töpel, Department of Plant and Environmental Sciences, University of Gothenburg.
+46 (0)70-406 52 92, or +46 (0)31- 786 2911
mats.topel@dpes.gu.se

Helena Aaberg | idw
Further information:
http://gupea.ub.gu.se/handle/2077/22321

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>