Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleft lip corrected genetically in mouse model

29.11.2011
Weill Cornell researchers report development and use of new mouse model that could show the way to new treatments and prevention strategies for cleft lip and cleft palate in humans

Scientists at Weill Cornell Medical College used genetic methods to successfully repair cleft lips in mice embryos specially engineered for the study of cleft lip and cleft palate. The research breakthrough may show the way to prevent or treat the conditions in humans.

Cleft lip and cleft palate are among the most common birth defects, with treatment requiring multiple cycles of surgery, speech therapy and orthodontics. To date, there have been very few pre-clinical methods that allow researchers to study the molecular causes of these malformations. In particular, there has been a lack of animal models that accurately reflect the contribution of multiple genes to these congenital deformities in humans.

In a report in a recent issue of the journal Developmental Cell, Dr. Licia Selleri, associate professor of cell and developmental biology at Weill Cornell Medical College, and her co-authors report the first multigenic mouse model of cleft lip with or without cleft palate. The researchers uncovered the role of genes for Pbx (Pre-B Cell Leukemia Transcription Factor) proteins in coordinating cellular signaling behaviors crucial for the development of these abnormalities. They also discovered that altering one type of molecule within the Wnt signaling pathway (that comprises a network of proteins best known for their roles in embryogenesis) is sufficient to correct the defects.

Dr. Selleri has studied Pbx proteins for many years and has previously demonstrated their involvement in organ and skeletal development. In her latest study, she and her collaborators, including postdoctoral fellows Drs. Elisabetta Ferretti and Bingsi Li, tested whether these proteins also play a role in facial development by using mutant mice that lacked various combinations of three Pbx genes in the ectoderm, the embryonic cell layer that gives rise to the lip and nose.

The researchers found that only mutations affecting multiple Pbx genes resulted in complete cleft lip, with or without cleft palate, in all of the mouse embryos with these compound mutations. This finding differs from those of previous studies using other mammal models of these conditions, in which a mutation in a single gene produced defects in only some of the animals, Dr. Selleri says. The role of Pbx genes in the development of the shape of the face is a new and surprising finding, she adds.

Moreover, the mouse embryos with multiple Pbx mutations also had reduced or absent Wnt activity, which plays a prominent role in embryo development, within the ectoderm. Dr. Ferretti, the first author of this study, found that Pbx genes regulate a chain of signaling molecules implicated in cleft lip with or without cleft palate, including Wnt, fibroblast growth factors (FGFs), p63, and interferon regulatory factor 6 (Irf6) -- signaling pathways that exist across mammal species. Disturbances in this network lead to a decrease in programmed cell death, thereby interfering with the proper fusion of facial tissues and resulting in cleft lip.

When Dr. Li, the second author of this study, used genetic methods to restore Wnt activity in the ectoderm of mouse embryos with compound Pbx mutations, the cleft lips in all of these animals completely disappeared. "To my knowledge, this is the first time that anyone has corrected this defect in embryos, and we really show here that Wnt is a critical factor," Dr. Selleri says. "This is a very provocative result because it opens a completely new avenue of strategies for tissue repair."

To follow up on this work, Dr. Selleri plans to test whether supplying Wnt molecules to Pbx-mutated mouse embryos placed within an environment that mimics the uterus is sufficient to correct or even prevent the abnormalities. Compared with genetic manipulations, this approach of delivering Wnt signals directly to the uterus would be more realistic for implementation in humans, Dr. Selleri says. She has just initiated a collaboration with Jason Spector, assistant professor of plastic surgery at Weill Cornell Medical College and with Larry Bonassar, associate professor of biomedical engineering at Cornell University, to envision Wnt-related strategies for tissue repair, such as tissue implants that would deliver Wnt molecules to correct these defects either in utero before the birth of the fetus, or after birth without the need of many surgeries.

Additional study collaborators include Rediet Zewdu and Victoria Wells of Weill Cornell Medical College; Jean M. Hebert of Albert Einstein College of Medicine in the Bronx, N.Y.; Courtney Karner of the University of Texas, Southwestern Medical Center, in Dallas, Texas; Matthew J. Anderson of the National Cancer Institute in Frederick, Md.; Trevor Williams of the University of Colorado, Denver; Jill Dixon and Michael J. Dixon of the University of Manchester in the U.K.; and Michael J. Depew of King's College London in the U.K.

The research was supported by a Marie Curie Fellowship, the Medical Research Council in the U.K., the Royal Society, King's College London, March of Dimes and Birth Defects Foundation, the National Institutes of Health, the Cleft Palate Foundation, and the Alice Bohmfalk Trust.

Weill Cornell Medical College

Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston. For more information, visit weill.cornell.edu.

Takla Boujaoude | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>